
image filtration ii

Ole-Johan Skrede
01.03.2017

INF2310 - Digital Image Processing

Department of Informatics
The Faculty of Mathematics and Natural Sciences
University of Oslo

After original slides by Fritz Albregtsen

today’s lecture

∙ High-pass filtering

∙ Image improvement and edge detection
∙ Gradient filters
∙ The Laplace and the LoG filter
∙ Canny’s edge detection
∙ Sections in Gonzales & Woods:

∙ 3.6: Sharpening Spatial Filters
∙ 10.2: Point, Line, and Edge Detection

∙ 10.2.1: Background
∙ 10.2.2: Detection of Isolated Points
∙ 10.2.3: Line Detection
∙ 10.2.4: Edge Models
∙ 10.2.5: Basic Edge Detection
∙ 10.2.6: More Advanced Techniques for Edge Detection

1

today’s lecture

∙ High-pass filtering
∙ Image improvement and edge detection

∙ Gradient filters
∙ The Laplace and the LoG filter
∙ Canny’s edge detection
∙ Sections in Gonzales & Woods:

∙ 3.6: Sharpening Spatial Filters
∙ 10.2: Point, Line, and Edge Detection

∙ 10.2.1: Background
∙ 10.2.2: Detection of Isolated Points
∙ 10.2.3: Line Detection
∙ 10.2.4: Edge Models
∙ 10.2.5: Basic Edge Detection
∙ 10.2.6: More Advanced Techniques for Edge Detection

1

today’s lecture

∙ High-pass filtering
∙ Image improvement and edge detection
∙ Gradient filters

∙ The Laplace and the LoG filter
∙ Canny’s edge detection
∙ Sections in Gonzales & Woods:

∙ 3.6: Sharpening Spatial Filters
∙ 10.2: Point, Line, and Edge Detection

∙ 10.2.1: Background
∙ 10.2.2: Detection of Isolated Points
∙ 10.2.3: Line Detection
∙ 10.2.4: Edge Models
∙ 10.2.5: Basic Edge Detection
∙ 10.2.6: More Advanced Techniques for Edge Detection

1

today’s lecture

∙ High-pass filtering
∙ Image improvement and edge detection
∙ Gradient filters
∙ The Laplace and the LoG filter

∙ Canny’s edge detection
∙ Sections in Gonzales & Woods:

∙ 3.6: Sharpening Spatial Filters
∙ 10.2: Point, Line, and Edge Detection

∙ 10.2.1: Background
∙ 10.2.2: Detection of Isolated Points
∙ 10.2.3: Line Detection
∙ 10.2.4: Edge Models
∙ 10.2.5: Basic Edge Detection
∙ 10.2.6: More Advanced Techniques for Edge Detection

1

today’s lecture

∙ High-pass filtering
∙ Image improvement and edge detection
∙ Gradient filters
∙ The Laplace and the LoG filter
∙ Canny’s edge detection

∙ Sections in Gonzales & Woods:
∙ 3.6: Sharpening Spatial Filters
∙ 10.2: Point, Line, and Edge Detection

∙ 10.2.1: Background
∙ 10.2.2: Detection of Isolated Points
∙ 10.2.3: Line Detection
∙ 10.2.4: Edge Models
∙ 10.2.5: Basic Edge Detection
∙ 10.2.6: More Advanced Techniques for Edge Detection

1

today’s lecture

∙ High-pass filtering
∙ Image improvement and edge detection
∙ Gradient filters
∙ The Laplace and the LoG filter
∙ Canny’s edge detection
∙ Sections in Gonzales & Woods:

∙ 3.6: Sharpening Spatial Filters
∙ 10.2: Point, Line, and Edge Detection

∙ 10.2.1: Background
∙ 10.2.2: Detection of Isolated Points
∙ 10.2.3: Line Detection
∙ 10.2.4: Edge Models
∙ 10.2.5: Basic Edge Detection
∙ 10.2.6: More Advanced Techniques for Edge Detection

1

high pass filters

overview

∙ Filters that let through high frequencies, and damps or block low frequencies.

∙ Effect:
∙ Damps slow variations, e.g. background
∙ Emphasizes sharp edges, lines, and details

∙ Is typically used to ”improve” the sharpness, and to detect edges.
∙ What happens with noise?
∙ Noise is amplified.

3

overview

∙ Filters that let through high frequencies, and damps or block low frequencies.
∙ Effect:

∙ Damps slow variations, e.g. background
∙ Emphasizes sharp edges, lines, and details

∙ Is typically used to ”improve” the sharpness, and to detect edges.
∙ What happens with noise?
∙ Noise is amplified.

3

overview

∙ Filters that let through high frequencies, and damps or block low frequencies.
∙ Effect:

∙ Damps slow variations, e.g. background
∙ Emphasizes sharp edges, lines, and details

∙ Is typically used to ”improve” the sharpness, and to detect edges.

∙ What happens with noise?
∙ Noise is amplified.

3

overview

∙ Filters that let through high frequencies, and damps or block low frequencies.
∙ Effect:

∙ Damps slow variations, e.g. background
∙ Emphasizes sharp edges, lines, and details

∙ Is typically used to ”improve” the sharpness, and to detect edges.
∙ What happens with noise?

∙ Noise is amplified.

3

overview

∙ Filters that let through high frequencies, and damps or block low frequencies.
∙ Effect:

∙ Damps slow variations, e.g. background
∙ Emphasizes sharp edges, lines, and details

∙ Is typically used to ”improve” the sharpness, and to detect edges.
∙ What happens with noise?
∙ Noise is amplified.

3

high pass filtering with convolution

∙ The sum of the weights in the convolution kernel is typically 0.

∙ This means that the sum of the pixel values in the convolved image is also 0 (if we
convolve in full mode).

∙ Which again mean that the convolved image contain both positive and negative
values.

∙ If you need an unsigned out-image, add some value and scale the image to the
desired range.

4

high pass filtering with convolution

∙ The sum of the weights in the convolution kernel is typically 0.
∙ This means that the sum of the pixel values in the convolved image is also 0 (if we
convolve in full mode).

∙ Which again mean that the convolved image contain both positive and negative
values.

∙ If you need an unsigned out-image, add some value and scale the image to the
desired range.

4

high pass filtering with convolution

∙ The sum of the weights in the convolution kernel is typically 0.
∙ This means that the sum of the pixel values in the convolved image is also 0 (if we
convolve in full mode).

∙ Which again mean that the convolved image contain both positive and negative
values.

∙ If you need an unsigned out-image, add some value and scale the image to the
desired range.

4

high pass filtering with convolution

∙ The sum of the weights in the convolution kernel is typically 0.
∙ This means that the sum of the pixel values in the convolved image is also 0 (if we
convolve in full mode).

∙ Which again mean that the convolved image contain both positive and negative
values.

∙ If you need an unsigned out-image, add some value and scale the image to the
desired range.

4

zero-sum result
Let w be some P ×Q (with odd P and Q) filter such that

S∑
s=−S

T∑
t=−T

w[s, t] = 0,

where S = (P − 1)/2 and T = (Q− 1)/2.
Furthermore, let f be some M ×N image. Then, if we convolve using a full mode (see
lecture slides for week 6), we see that the sum of all elements in the result g is zero.

M−1+S∑
x=−S

N−1+T∑
y=−T

(f ∗ w)[x, y] =
M−1+S∑
x=−S

N−1+T∑
y=−T

S∑
s=−S

T∑
t=−T

f [x− s, y − t]w[s, t]

=
S∑

s=−S

T∑
t=−T

M−1+S∑
x=−S

N−1+T∑
y=−T

f [x− s, y − t]w[s, t]

=

S∑
s=−S

T∑
t=−T

M−1+s∑
x=s

N−1+t∑
y=t

f [x− s, y − t]w[s, t]

=
S∑

s=−S

T∑
t=−T

M−1∑
m=0

N−1∑
n=0

f [m,n]w[s, t]

=
M−1∑
m=0

N−1∑
n=0

[
f [m,n]

(
S∑

s=−S

T∑
t=−T

w[s, t]

)]
= 0.

5

zero sum implementation
Implementation in python

1 import numpy as np
2 from sc ipy import s i gna l
3

4 M = 4
5 N = 5
6

7 f = np . random . randint (low =0 , high =255 ,
s i z e = (M, N))

8 w = np . ar ray ([[− 1 , −1 , −1] ,
9 [−1 , 8 , −1] ,
10 [−1 , −1 , −1]])
11 g = s i gna l . convolve2d (f , w , mode= ’ f u l l ’)
12

13 pr in t (’ f = \n ’ , f)
14 pr in t (’w = \n ’ , w)
15 pr in t (’ g = \n ’ , g)
16 pr in t (’sum g = ’ , np . sum(g))
17

Print of result
1 f =
2 [[1 0 4 162 238 20 78]
3 [44 106 36 138 244]
4 [102 110 17 189 8]
5 [245 90 93 21 1 5 6]]
6 w =
7 [[−1 −1 −1]
8 [−1 8 −1]
9 [−1 −1 −1]]
10 g =
11 [[−104 −266 −504 −420 −336 −98 −78]
12 [−148 520 768 1442 −574 222 −322]
13 [−250 −232 35 −692 274 1519 −330]
14 [−391 221 147 −647 799 −684 −408]
15 [−347 1658 153 317 −295 1030 −164]
16 [−245 −335 −428 −204 −270 −177 −156]]
17 sum g = 0
18

6

point detection

∙ An example of a high-pass filter

w =

 −1 −1 −1

−1 8 −1

−1 −1 −1



∙ This filter can for instance be used to detect isolated points in an image f :
∙ Compute the convolution g = f ∗ w.
∙ Isolated points will be highlighted as they yield a high absolute response.
∙ For some threshold T > 0, we can detect points (x, y) that satisfy |g(x, y)| > T .

7

point detection

∙ An example of a high-pass filter

w =

 −1 −1 −1

−1 8 −1

−1 −1 −1


∙ This filter can for instance be used to detect isolated points in an image f :

∙ Compute the convolution g = f ∗ w.
∙ Isolated points will be highlighted as they yield a high absolute response.
∙ For some threshold T > 0, we can detect points (x, y) that satisfy |g(x, y)| > T .

7

example — point detection

Figure 1: Point detection with the top mask. Left: X-ray image of turbine blade with a porosity. The porosity contains a single black pixel. Middle: Result of convolving the mask
with the image. Right: Result after thresholding the convolved image.

8

example — ship detection

Figure 2: Radar image of an area of the sea.

∙ The small bright points are ships

∙ The previously shown filter will result in high response for
the ships, but almost as high response at edges and
corners.

∙ Better with a larger filter of the same type.

w =



−1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1

−1 −1 4 4 4 −1 −1

−1 −1 4 8 4 −1 −1

−1 −1 4 4 4 −1 −1

−1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1



9

example — ship detection

Figure 2: Radar image of an area of the sea.

∙ The small bright points are ships
∙ The previously shown filter will result in high response for
the ships, but almost as high response at edges and
corners.

∙ Better with a larger filter of the same type.

w =



−1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1

−1 −1 4 4 4 −1 −1

−1 −1 4 8 4 −1 −1

−1 −1 4 4 4 −1 −1

−1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1



9

example — ship detection

Figure 2: Radar image of an area of the sea.

∙ The small bright points are ships
∙ The previously shown filter will result in high response for
the ships, but almost as high response at edges and
corners.

∙ Better with a larger filter of the same type.

w =



−1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1

−1 −1 4 4 4 −1 −1

−1 −1 4 8 4 −1 −1

−1 −1 4 4 4 −1 −1

−1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1


9

image improvement with high-pass filtering

∙ This filter can also be used for image improvement

w =

 −1 −1 −1

−1 8 −1

−1 −1 −1


∙ Idea:

∙ The filtration will detect the beginning and end of edges

∙ Other areas will give responses close to zero
∙ We can then add the filtered image to the original to make edges more visible, which
makes the image seems sharper.

10

image improvement with high-pass filtering

∙ This filter can also be used for image improvement

w =

 −1 −1 −1

−1 8 −1

−1 −1 −1


∙ Idea:

∙ The filtration will detect the beginning and end of edges
∙ Other areas will give responses close to zero

∙ We can then add the filtered image to the original to make edges more visible, which
makes the image seems sharper.

10

image improvement with high-pass filtering

∙ This filter can also be used for image improvement

w =

 −1 −1 −1

−1 8 −1

−1 −1 −1


∙ Idea:

∙ The filtration will detect the beginning and end of edges
∙ Other areas will give responses close to zero
∙ We can then add the filtered image to the original to make edges more visible, which
makes the image seems sharper.

10

image improvement with high-pass filtering

∙ The convolution mask we have investigated can be rewritten as ”high-pass = k *
(original - low-pass)”, where k = 9 −1 −1 −1

−1 8 −1

−1 −1 −1

 = 9


 0 0 0

0 1 0

0 0 0

− 1

9

 1 1 1

1 1 1

1 1 1




∙ With this, our image improvement strategy can be viewed as:
1. Low pass filtering
2. Subtract the low-pass filtered image from the original
3. Add k times the difference from point 2. to the original image.

∙ The described method is called highboost-filtering.

11

image improvement with high-pass filtering

∙ The convolution mask we have investigated can be rewritten as ”high-pass = k *
(original - low-pass)”, where k = 9 −1 −1 −1

−1 8 −1

−1 −1 −1

 = 9


 0 0 0

0 1 0

0 0 0

− 1

9

 1 1 1

1 1 1

1 1 1




∙ With this, our image improvement strategy can be viewed as:
1. Low pass filtering
2. Subtract the low-pass filtered image from the original
3. Add k times the difference from point 2. to the original image.

∙ The described method is called highboost-filtering.

11

unsharp masking and highboost-filtering

Figure 3: Schematic illustration of image sharpening on a 1D ramp.

∙ Given an image.
∙ Blur the image with a low-pass filter.
∙ Compute the difference original − blurred

∙ sharpened = original + k(original − blurred)

∙ k is a positive constant.
∙ k = 1: Unsharp masking
∙ k > 1: Highboost-filtering

12

unsharp masking and highboost-filtering

Figure 3: Schematic illustration of image sharpening on a 1D ramp.

∙ Given an image.
∙ Blur the image with a low-pass filter.

∙ Compute the difference original − blurred

∙ sharpened = original + k(original − blurred)

∙ k is a positive constant.
∙ k = 1: Unsharp masking
∙ k > 1: Highboost-filtering

12

unsharp masking and highboost-filtering

Figure 3: Schematic illustration of image sharpening on a 1D ramp.

∙ Given an image.
∙ Blur the image with a low-pass filter.
∙ Compute the difference original − blurred

∙ sharpened = original + k(original − blurred)

∙ k is a positive constant.
∙ k = 1: Unsharp masking
∙ k > 1: Highboost-filtering

12

unsharp masking and highboost-filtering

Figure 3: Schematic illustration of image sharpening on a 1D ramp.

∙ Given an image.
∙ Blur the image with a low-pass filter.
∙ Compute the difference original − blurred

∙ sharpened = original + k(original − blurred)

∙ k is a positive constant.
∙ k = 1: Unsharp masking
∙ k > 1: Highboost-filtering

12

unsharp masking and highboost-filtering

Figure 3: Schematic illustration of image sharpening on a 1D ramp.

∙ Given an image.
∙ Blur the image with a low-pass filter.
∙ Compute the difference original − blurred

∙ sharpened = original + k(original − blurred)

∙ k is a positive constant.
∙ k = 1: Unsharp masking
∙ k > 1: Highboost-filtering

12

examples

13

examples

13

edge-detection

motivation

∙ There exists much image information at the edges of objects in an image.

∙ Biological visual systems are based on edge-detection.
∙ Such systems often works in parallel and/or sequential:

∙ Local areas is treated independently
∙ Local results can be dependent on earlier results

15

motivation

∙ There exists much image information at the edges of objects in an image.
∙ Biological visual systems are based on edge-detection.

∙ Such systems often works in parallel and/or sequential:
∙ Local areas is treated independently
∙ Local results can be dependent on earlier results

15

motivation

∙ There exists much image information at the edges of objects in an image.
∙ Biological visual systems are based on edge-detection.
∙ Such systems often works in parallel and/or sequential:

∙ Local areas is treated independently
∙ Local results can be dependent on earlier results

15

ideal edges and lines

Figure 4: Edge illustrations and cross sections.

Homogeneous plane An area where all pixel values
are equal.

Edge The transition between two areas with
different color value

∙ The division can be between two
pixels

∙ But often the first pixel on one of
the sides

Line A line is two consecutive edges in the
opposite ”direction”

16

ideal edges and lines

Figure 4: Edge illustrations and cross sections.

Homogeneous plane An area where all pixel values
are equal.

Edge The transition between two areas with
different color value

∙ The division can be between two
pixels

∙ But often the first pixel on one of
the sides

Line A line is two consecutive edges in the
opposite ”direction”

16

ideal edges and lines

Figure 4: Edge illustrations and cross sections.

Homogeneous plane An area where all pixel values
are equal.

Edge The transition between two areas with
different color value

∙ The division can be between two
pixels

∙ But often the first pixel on one of
the sides

Line A line is two consecutive edges in the
opposite ”direction”

16

some edge types

Figure 5: Some edge types.

17

disclaimer

In order to arrive at some of the results in this lecture, we need to use some math.
Depending on your previous experience, it may seem a bit heavy. We will touch upon

∙ Polar coordinates
∙ Calculus:

∙ Derivatives in one and two variables
∙ Chain rule in differentiation
∙ Finding critical points (minima and maxima)

I will assume that this is known, and since this is not a math course, I will not spend so
much time explaining it here. I strongly encourage you to read up on these topics if you
do not understand the next couple of slides. Also feel free to ask me, and I can try to
explain.

18

disclaimer

In order to arrive at some of the results in this lecture, we need to use some math.
Depending on your previous experience, it may seem a bit heavy. We will touch upon

∙ Polar coordinates

∙ Calculus:
∙ Derivatives in one and two variables
∙ Chain rule in differentiation
∙ Finding critical points (minima and maxima)

I will assume that this is known, and since this is not a math course, I will not spend so
much time explaining it here. I strongly encourage you to read up on these topics if you
do not understand the next couple of slides. Also feel free to ask me, and I can try to
explain.

18

disclaimer

In order to arrive at some of the results in this lecture, we need to use some math.
Depending on your previous experience, it may seem a bit heavy. We will touch upon

∙ Polar coordinates
∙ Calculus:

∙ Derivatives in one and two variables
∙ Chain rule in differentiation
∙ Finding critical points (minima and maxima)

I will assume that this is known, and since this is not a math course, I will not spend so
much time explaining it here. I strongly encourage you to read up on these topics if you
do not understand the next couple of slides. Also feel free to ask me, and I can try to
explain.

18

disclaimer

In order to arrive at some of the results in this lecture, we need to use some math.
Depending on your previous experience, it may seem a bit heavy. We will touch upon

∙ Polar coordinates
∙ Calculus:

∙ Derivatives in one and two variables
∙ Chain rule in differentiation
∙ Finding critical points (minima and maxima)

I will assume that this is known, and since this is not a math course, I will not spend so
much time explaining it here. I strongly encourage you to read up on these topics if you
do not understand the next couple of slides. Also feel free to ask me, and I can try to
explain.

18

discrete differentiation

∙ An edge is characterized with a change in intensity

∙ For a function f , the slope of the tangent line at some point a on the x-axis can be
approximated by the fraction

f(a+ h)− f(a)

(a+ h)− a

∙ The limit when the distance h approaches zero is defined to be the derivative of f at
a

df
dx (a) := lim

h→0

f(a+ h)− f(a)

h
.

∙ If this limit exists, f is said to be differentiable at a.
∙ The derivative is in general not defined everywhere for discrete functions. We can,
however, approximate it with h ≥ 1 in the definition.

19

discrete differentiation

∙ An edge is characterized with a change in intensity
∙ For a function f , the slope of the tangent line at some point a on the x-axis can be
approximated by the fraction

f(a+ h)− f(a)

(a+ h)− a

∙ The limit when the distance h approaches zero is defined to be the derivative of f at
a

df
dx (a) := lim

h→0

f(a+ h)− f(a)

h
.

∙ If this limit exists, f is said to be differentiable at a.
∙ The derivative is in general not defined everywhere for discrete functions. We can,
however, approximate it with h ≥ 1 in the definition.

19

discrete differentiation

∙ An edge is characterized with a change in intensity
∙ For a function f , the slope of the tangent line at some point a on the x-axis can be
approximated by the fraction

f(a+ h)− f(a)

(a+ h)− a

∙ The limit when the distance h approaches zero is defined to be the derivative of f at
a

df
dx (a) := lim

h→0

f(a+ h)− f(a)

h
.

∙ If this limit exists, f is said to be differentiable at a.
∙ The derivative is in general not defined everywhere for discrete functions. We can,
however, approximate it with h ≥ 1 in the definition.

19

discrete differentiation

∙ An edge is characterized with a change in intensity
∙ For a function f , the slope of the tangent line at some point a on the x-axis can be
approximated by the fraction

f(a+ h)− f(a)

(a+ h)− a

∙ The limit when the distance h approaches zero is defined to be the derivative of f at
a

df
dx (a) := lim

h→0

f(a+ h)− f(a)

h
.

∙ If this limit exists, f is said to be differentiable at a.

∙ The derivative is in general not defined everywhere for discrete functions. We can,
however, approximate it with h ≥ 1 in the definition.

19

discrete differentiation

∙ An edge is characterized with a change in intensity
∙ For a function f , the slope of the tangent line at some point a on the x-axis can be
approximated by the fraction

f(a+ h)− f(a)

(a+ h)− a

∙ The limit when the distance h approaches zero is defined to be the derivative of f at
a

df
dx (a) := lim

h→0

f(a+ h)− f(a)

h
.

∙ If this limit exists, f is said to be differentiable at a.
∙ The derivative is in general not defined everywhere for discrete functions. We can,
however, approximate it with h ≥ 1 in the definition.

19

image derivatives

∙ A digital image is a bivariate discrete function

∙ A continuous function f in two variables x and y can be differentiated wrt. both
∙ We denote the so-called partial derivatives of f wrt. x and y as ∂f

∂x and ∂f
∂y ,

respectively.
∙ A vector of a function’s partial derivatives is called the gradient, and we denote it
with the nabla symbol

∇f :=

 ∂f
∂x

∂f
∂y

 .

20

image derivatives

∙ A digital image is a bivariate discrete function
∙ A continuous function f in two variables x and y can be differentiated wrt. both

∙ We denote the so-called partial derivatives of f wrt. x and y as ∂f
∂x and ∂f

∂y ,
respectively.

∙ A vector of a function’s partial derivatives is called the gradient, and we denote it
with the nabla symbol

∇f :=

 ∂f
∂x

∂f
∂y

 .

20

image derivatives

∙ A digital image is a bivariate discrete function
∙ A continuous function f in two variables x and y can be differentiated wrt. both
∙ We denote the so-called partial derivatives of f wrt. x and y as ∂f

∂x and ∂f
∂y ,

respectively.

∙ A vector of a function’s partial derivatives is called the gradient, and we denote it
with the nabla symbol

∇f :=

 ∂f
∂x

∂f
∂y

 .

20

image derivatives

∙ A digital image is a bivariate discrete function
∙ A continuous function f in two variables x and y can be differentiated wrt. both
∙ We denote the so-called partial derivatives of f wrt. x and y as ∂f

∂x and ∂f
∂y ,

respectively.
∙ A vector of a function’s partial derivatives is called the gradient, and we denote it
with the nabla symbol

∇f :=

 ∂f
∂x

∂f
∂y

 .

20

polar coordinates

A function f will have values f(x, y) in terms of variables (x, y) in a cartesian coordinate
system. We can also find the values f(r, θ) in a polar coordinate system. Here

x = r cos θ, and y = r sin θ.

We can therefore find the derivative of f wrt. r (called the directional derivative) using
the chain rule

∂f

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r

= gx
∂x

∂r
+ gy

∂y

∂r

= gx cos θ + gy sin θ.

21

polar coordinates

A function f will have values f(x, y) in terms of variables (x, y) in a cartesian coordinate
system. We can also find the values f(r, θ) in a polar coordinate system. Here

x = r cos θ, and y = r sin θ.

We can therefore find the derivative of f wrt. r (called the directional derivative) using
the chain rule

∂f

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r

= gx
∂x

∂r
+ gy

∂y

∂r

= gx cos θ + gy sin θ.

21

angle of steepest ascent

∙ We want to find the angle θg of steepest ascent.

∙ This is the angle where the directional derivative is largest.
∙ This is again the angle where the derivative of the directional derivative wrt. θ is
equal to zero (a stationary or critical point), and the second order derivative of the
directional derivative wrt. θ is smaller than zero. That is

∂

∂θ

(
∂f

∂r

)∣∣∣∣
θ=θg

= 0

and

∂2

∂θ2

(
∂f

∂r

)∣∣∣∣
θ=θg

< 0.

22

angle of steepest ascent

∙ We want to find the angle θg of steepest ascent.
∙ This is the angle where the directional derivative is largest.

∙ This is again the angle where the derivative of the directional derivative wrt. θ is
equal to zero (a stationary or critical point), and the second order derivative of the
directional derivative wrt. θ is smaller than zero. That is

∂

∂θ

(
∂f

∂r

)∣∣∣∣
θ=θg

= 0

and

∂2

∂θ2

(
∂f

∂r

)∣∣∣∣
θ=θg

< 0.

22

angle of steepest ascent

∙ We want to find the angle θg of steepest ascent.
∙ This is the angle where the directional derivative is largest.
∙ This is again the angle where the derivative of the directional derivative wrt. θ is
equal to zero (a stationary or critical point), and the second order derivative of the
directional derivative wrt. θ is smaller than zero. That is

∂

∂θ

(
∂f

∂r

)∣∣∣∣
θ=θg

= 0

and

∂2

∂θ2

(
∂f

∂r

)∣∣∣∣
θ=θg

< 0.

22

stationary point

Remember our earlier result

∂f

∂r
= gx cos θ + gy sin θ,

Therefore

∂

∂θ

(
∂f

∂r

)
= −gx sin θ + gy cos θ.

Defining θg to be the angle θ where this is equal to zero yields

−gx sin θg + gy cos θg = 0

or

θg = arctan
(
gy
gx

)
.

23

stationary point

Remember our earlier result

∂f

∂r
= gx cos θ + gy sin θ,

Therefore

∂

∂θ

(
∂f

∂r

)
= −gx sin θ + gy cos θ.

Defining θg to be the angle θ where this is equal to zero yields

−gx sin θg + gy cos θg = 0

or

θg = arctan
(
gy
gx

)
.

23

stationary point

Remember our earlier result

∂f

∂r
= gx cos θ + gy sin θ,

Therefore

∂

∂θ

(
∂f

∂r

)
= −gx sin θ + gy cos θ.

Defining θg to be the angle θ where this is equal to zero yields

−gx sin θg + gy cos θg = 0

or

θg = arctan
(
gy
gx

)
.

23

minima or maxima?

The expression of the second order derivative wrt theta is

∂2

∂θ2

(
∂f

∂r

)
= −gx cos θ − gy sin θ.

For the next derivation, we will use the result from trigonometry

sin (arctan(x)) = x√
1 + x2

, and cos (arctan(x)) = 1√
1 + x2

.

Using this, and evaluating the second derivative at the stationary angle θg , we get

∂2

∂θ2

(
∂f

∂r

)
(θg) = −gx

1√
1 +

(
gy
gx

)2 − gy

(
gy
gx

)
√
1 +

(
gy
gx

)2
= −

√
g2x + g2y

which is negative. This means that our stationary point θg , is a maximum.

24

minima or maxima?

The expression of the second order derivative wrt theta is

∂2

∂θ2

(
∂f

∂r

)
= −gx cos θ − gy sin θ.

For the next derivation, we will use the result from trigonometry

sin (arctan(x)) = x√
1 + x2

, and cos (arctan(x)) = 1√
1 + x2

.

Using this, and evaluating the second derivative at the stationary angle θg , we get

∂2

∂θ2

(
∂f

∂r

)
(θg) = −gx

1√
1 +

(
gy
gx

)2 − gy

(
gy
gx

)
√
1 +

(
gy
gx

)2
= −

√
g2x + g2y

which is negative. This means that our stationary point θg , is a maximum.

24

minima or maxima?

The expression of the second order derivative wrt theta is

∂2

∂θ2

(
∂f

∂r

)
= −gx cos θ − gy sin θ.

For the next derivation, we will use the result from trigonometry

sin (arctan(x)) = x√
1 + x2

, and cos (arctan(x)) = 1√
1 + x2

.

Using this, and evaluating the second derivative at the stationary angle θg , we get

∂2

∂θ2

(
∂f

∂r

)
(θg) = −gx

1√
1 +

(
gy
gx

)2 − gy

(
gy
gx

)
√

1 +
(

gy
gx

)2
= −

√
g2x + g2y

which is negative. This means that our stationary point θg , is a maximum.
24

gradient magnitude

By evaluating the directional derivative at our stationary point, we get

∂f

∂r
(θg) = gx cos θg + gy sin θg

= gx
1√

1 +
(

gy
gx

)2 + gy

(
gy
gx

)
√
1 +

(
gy
gx

)2
=
√
g2x + g2y

25

summary — gradient angle and gradient magnitude

∙ The gradient points in the direction where the function ascends the most. We call
this the gradient angle

θg = arctan
(
gy
gx

)

∙ The ascent magnitude at this point is called the gradient magnitude and is

|∇f | = ∂f

∂r
(θg)

=
√

g2x + g2y.

∙ Where

gx =
∂f

∂x
, and gy =

∂f

∂y

are the components of the gradient of f , ∇f .

26

summary — gradient angle and gradient magnitude

∙ The gradient points in the direction where the function ascends the most. We call
this the gradient angle

θg = arctan
(
gy
gx

)
∙ The ascent magnitude at this point is called the gradient magnitude and is

|∇f | = ∂f

∂r
(θg)

=
√

g2x + g2y.

∙ Where

gx =
∂f

∂x
, and gy =

∂f

∂y

are the components of the gradient of f , ∇f .

26

edge and gradient direction

The gradient direction is the direction where the function increases the most. This is also
the direction orthogonal to the edge direction.

27

digital gradient approximations

∙ We will approximate the gradient at some pixel (i, j) by the difference between
pixels in the neighbourhood.

∙ We can do this by using two convolution filters (hx, and hy) that approximates the
two components of the gradient operator.

∙ The convolution result gx[i, j] and gy[i, j] will then approximate the gradient at (i, j)
in the vertical and horizontal direction, respectively.

∙ In the next slides, we will introduce several different gradient operators. Note that
we write convolution filters, while G&W use correlation filters, and they are therefore
rotated 180 degrees compared to ours.

28

digital gradient approximations

∙ We will approximate the gradient at some pixel (i, j) by the difference between
pixels in the neighbourhood.

∙ We can do this by using two convolution filters (hx, and hy) that approximates the
two components of the gradient operator.

∙ The convolution result gx[i, j] and gy[i, j] will then approximate the gradient at (i, j)
in the vertical and horizontal direction, respectively.

∙ In the next slides, we will introduce several different gradient operators. Note that
we write convolution filters, while G&W use correlation filters, and they are therefore
rotated 180 degrees compared to ours.

28

digital gradient approximations

∙ We will approximate the gradient at some pixel (i, j) by the difference between
pixels in the neighbourhood.

∙ We can do this by using two convolution filters (hx, and hy) that approximates the
two components of the gradient operator.

∙ The convolution result gx[i, j] and gy[i, j] will then approximate the gradient at (i, j)
in the vertical and horizontal direction, respectively.

∙ In the next slides, we will introduce several different gradient operators. Note that
we write convolution filters, while G&W use correlation filters, and they are therefore
rotated 180 degrees compared to ours.

28

digital gradient approximations

∙ We will approximate the gradient at some pixel (i, j) by the difference between
pixels in the neighbourhood.

∙ We can do this by using two convolution filters (hx, and hy) that approximates the
two components of the gradient operator.

∙ The convolution result gx[i, j] and gy[i, j] will then approximate the gradient at (i, j)
in the vertical and horizontal direction, respectively.

∙ In the next slides, we will introduce several different gradient operators. Note that
we write convolution filters, while G&W use correlation filters, and they are therefore
rotated 180 degrees compared to ours.

28

1d asymmetrical gradient operators

∙ With gx = f ∗ hx and gy = f ∗ hy , where

hx =

 1

−1

0

 , hy =
[
1 −1 0

]
,

we get

gx[i, j] = f [i+ 1, j]− f [i, j]

gy[i, j] = f [i, j + 1]− f [i, j]

∙ The definition is such that the gradient components are positive for an edge where
the intensity increases downwards and from the left to the right in the image.

∙ One problem with this operator is that the gradient-approximations refers to a point
in between two pixels, and a different point for the x- and y-component.

29

1d asymmetrical gradient operators

∙ With gx = f ∗ hx and gy = f ∗ hy , where

hx =

 1

−1

0

 , hy =
[
1 −1 0

]
,

we get

gx[i, j] = f [i+ 1, j]− f [i, j]

gy[i, j] = f [i, j + 1]− f [i, j]

∙ The definition is such that the gradient components are positive for an edge where
the intensity increases downwards and from the left to the right in the image.

∙ One problem with this operator is that the gradient-approximations refers to a point
in between two pixels, and a different point for the x- and y-component.

29

1d asymmetrical gradient operators

∙ With gx = f ∗ hx and gy = f ∗ hy , where

hx =

 1

−1

0

 , hy =
[
1 −1 0

]
,

we get

gx[i, j] = f [i+ 1, j]− f [i, j]

gy[i, j] = f [i, j + 1]− f [i, j]

∙ The definition is such that the gradient components are positive for an edge where
the intensity increases downwards and from the left to the right in the image.

∙ One problem with this operator is that the gradient-approximations refers to a point
in between two pixels, and a different point for the x- and y-component.

29

1d asymmetrical gradient operators — directions

(a) Shapes (b) gx (c) gy

30

1d asymmetrical gradient operators — larger example

(a) Chicago buildings

(b) gx (c) gy

31

1d symmetrical gradient operators

∙ With gx = f ∗ hx and gy = f ∗ hy , where

hx =

 1

0

−1

 , hy =
[
1 0 −1

]
,

we get

gx[i, j] = f [i+ 1, j]− f [i− 1, j]

gy[i, j] = f [i, j + 1]− f [i, j − 1]

∙ This gives the derivative at a the pixel (i, j), for both the x-component and the
y-component.

∙ One problem is that the operators are sensitive to noise.

32

1d symmetrical gradient operators

∙ With gx = f ∗ hx and gy = f ∗ hy , where

hx =

 1

0

−1

 , hy =
[
1 0 −1

]
,

we get

gx[i, j] = f [i+ 1, j]− f [i− 1, j]

gy[i, j] = f [i, j + 1]− f [i, j − 1]

∙ This gives the derivative at a the pixel (i, j), for both the x-component and the
y-component.

∙ One problem is that the operators are sensitive to noise.

32

1d symmetrical gradient operators

∙ With gx = f ∗ hx and gy = f ∗ hy , where

hx =

 1

0

−1

 , hy =
[
1 0 −1

]
,

we get

gx[i, j] = f [i+ 1, j]− f [i− 1, j]

gy[i, j] = f [i, j + 1]− f [i, j − 1]

∙ This gives the derivative at a the pixel (i, j), for both the x-component and the
y-component.

∙ One problem is that the operators are sensitive to noise.

32

1d symmetrical gradient operators — directions

(a) Shapes (b) gx (c) gy

33

symmetrical gradient operators — larger example

(a) Chicago buildings

(b) gx (c) gy

34

increasing noise robustness: 2d gradient operators

∙ If we first apply a smoothing filter to reduce the noise.

∙ Then apply the desired gradient filter.
∙ We can utilize the separability of filters, and create new more noise-robust filters.

35

increasing noise robustness: 2d gradient operators

∙ If we first apply a smoothing filter to reduce the noise.
∙ Then apply the desired gradient filter.

∙ We can utilize the separability of filters, and create new more noise-robust filters.

35

increasing noise robustness: 2d gradient operators

∙ If we first apply a smoothing filter to reduce the noise.
∙ Then apply the desired gradient filter.
∙ We can utilize the separability of filters, and create new more noise-robust filters.

35

prewitt operator

hx =

 1

0

−1

 ∗
[
1 1 1

]
=

 1 1 1

0 0 0

−1 −1 −1

 ,

hy =
[
1 0 −1

]
∗

 1

1

1

 =

 1 0 −1

1 0 −1

1 0 −1

 .

36

prewitt operator

hx =

 1

0

−1

 ∗
[
1 1 1

]
=

 1 1 1

0 0 0

−1 −1 −1

 ,

hy =
[
1 0 −1

]
∗

 1

1

1

 =

 1 0 −1

1 0 −1

1 0 −1

 .

36

sobel operator

hx =

 1

0

−1

 ∗
[
1 2 1

]
=

 1 2 1

0 0 0

−1 −2 −1

 ,

hy =
[
1 0 −1

]
∗

 1

2

1

 =

 1 0 −1

2 0 −2

1 0 −1

 .

37

sobel operator

hx =

 1

0

−1

 ∗
[
1 2 1

]
=

 1 2 1

0 0 0

−1 −2 −1

 ,

hy =
[
1 0 −1

]
∗

 1

2

1

 =

 1 0 −1

2 0 −2

1 0 −1

 .

37

frei-chen operator

hx =

 1

0

−1

 ∗
[
1

√
2 1

]
=

 1
√
2 1

0 0 0

−1 −
√
2 −1

 ,

hy =
[
1 0 −1

]
∗

 1√
2

1

 =

 1 0 −1√
2 0 −

√
2

1 0 −1

 .

38

frei-chen operator

hx =

 1

0

−1

 ∗
[
1

√
2 1

]
=

 1
√
2 1

0 0 0

−1 −
√
2 −1

 ,

hy =
[
1 0 −1

]
∗

 1√
2

1

 =

 1 0 −1√
2 0 −

√
2

1 0 −1

 .

38

larger gradient operators

Gradient operators can be made more robust to noise by adding more low-pass filtering.

One example is the 5× 5 Sobel operators (remember to utilize the separability when
implementing them).

hx =

 1 2 1

0 0 0

−1 −2 −1

 ∗

 1 2 1

2 4 2

1 2 1

 =


1 4 6 4 1

2 8 12 8 2

0 0 0 0 0

−2 −8 −12 −8 −2

−1 −4 −6 −4 −1

 ,

hy =

 1 0 −1

2 0 −2

1 0 −1

 ∗

 1 2 1

2 4 2

1 2 1

 =


1 2 0 −2 −1

4 8 0 −8 −4

6 12 0 −12 −6

4 8 0 −8 −4

1 2 0 −2 −1

 .

39

larger gradient operators

Gradient operators can be made more robust to noise by adding more low-pass filtering.
One example is the 5× 5 Sobel operators (remember to utilize the separability when
implementing them).

hx =

 1 2 1

0 0 0

−1 −2 −1

 ∗

 1 2 1

2 4 2

1 2 1

 =


1 4 6 4 1

2 8 12 8 2

0 0 0 0 0

−2 −8 −12 −8 −2

−1 −4 −6 −4 −1

 ,

hy =

 1 0 −1

2 0 −2

1 0 −1

 ∗

 1 2 1

2 4 2

1 2 1

 =


1 2 0 −2 −1

4 8 0 −8 −4

6 12 0 −12 −6

4 8 0 −8 −4

1 2 0 −2 −1

 .

39

larger gradient operators

Gradient operators can be made more robust to noise by adding more low-pass filtering.
One example is the 5× 5 Sobel operators (remember to utilize the separability when
implementing them).

hx =

 1 2 1

0 0 0

−1 −2 −1

 ∗

 1 2 1

2 4 2

1 2 1

 =


1 4 6 4 1

2 8 12 8 2

0 0 0 0 0

−2 −8 −12 −8 −2

−1 −4 −6 −4 −1

 ,

hy =

 1 0 −1

2 0 −2

1 0 −1

 ∗

 1 2 1

2 4 2

1 2 1

 =


1 2 0 −2 −1

4 8 0 −8 −4

6 12 0 −12 −6

4 8 0 −8 −4

1 2 0 −2 −1

 .

39

gradient operator traits

∙ We can make the gradient operators less sensitive to noise by low-pass filtering in
one direction and approximate the derivative in the orthogonal direction.

∙ The Prewitt operator is more sensitive to horizontal and vertical edges than to
diagonal edges.

∙ The Frei-Chen operator has equal sensitivity.
∙ The Sobel operator is more sensitive to diagonal edges than to horizontal and
vertical edges.

40

gradient operator traits

∙ We can make the gradient operators less sensitive to noise by low-pass filtering in
one direction and approximate the derivative in the orthogonal direction.

∙ The Prewitt operator is more sensitive to horizontal and vertical edges than to
diagonal edges.

∙ The Frei-Chen operator has equal sensitivity.
∙ The Sobel operator is more sensitive to diagonal edges than to horizontal and
vertical edges.

40

gradient operator traits

∙ We can make the gradient operators less sensitive to noise by low-pass filtering in
one direction and approximate the derivative in the orthogonal direction.

∙ The Prewitt operator is more sensitive to horizontal and vertical edges than to
diagonal edges.

∙ The Frei-Chen operator has equal sensitivity.

∙ The Sobel operator is more sensitive to diagonal edges than to horizontal and
vertical edges.

40

gradient operator traits

∙ We can make the gradient operators less sensitive to noise by low-pass filtering in
one direction and approximate the derivative in the orthogonal direction.

∙ The Prewitt operator is more sensitive to horizontal and vertical edges than to
diagonal edges.

∙ The Frei-Chen operator has equal sensitivity.
∙ The Sobel operator is more sensitive to diagonal edges than to horizontal and
vertical edges.

40

gradient image implementation

∙ For an image f , a vertical gradient filter hx and a horizontal gradient filter hy , we can
compute:

∙ The vertical gradient gx[i, j] = (f ∗ hx)[i, j].
∙ The horizontal gradient gy[i, j] = (f ∗ hy)[i, j].

∙ The gradient direction θ[i, j] = arctan
(

gy[i,j]
gx[i,j]

)
.

∙ The gradient magnitude |∇f | =
√

g2x[i, j] + g2y[i, j].

∙ Note that the gradients can contain negative values, so consider scaling them before
displaying them.

∙ Note also that the gradient direction is in radians.

41

gradient image implementation

∙ For an image f , a vertical gradient filter hx and a horizontal gradient filter hy , we can
compute:

∙ The vertical gradient gx[i, j] = (f ∗ hx)[i, j].

∙ The horizontal gradient gy[i, j] = (f ∗ hy)[i, j].

∙ The gradient direction θ[i, j] = arctan
(

gy[i,j]
gx[i,j]

)
.

∙ The gradient magnitude |∇f | =
√

g2x[i, j] + g2y[i, j].

∙ Note that the gradients can contain negative values, so consider scaling them before
displaying them.

∙ Note also that the gradient direction is in radians.

41

gradient image implementation

∙ For an image f , a vertical gradient filter hx and a horizontal gradient filter hy , we can
compute:

∙ The vertical gradient gx[i, j] = (f ∗ hx)[i, j].
∙ The horizontal gradient gy[i, j] = (f ∗ hy)[i, j].

∙ The gradient direction θ[i, j] = arctan
(

gy[i,j]
gx[i,j]

)
.

∙ The gradient magnitude |∇f | =
√

g2x[i, j] + g2y[i, j].

∙ Note that the gradients can contain negative values, so consider scaling them before
displaying them.

∙ Note also that the gradient direction is in radians.

41

gradient image implementation

∙ For an image f , a vertical gradient filter hx and a horizontal gradient filter hy , we can
compute:

∙ The vertical gradient gx[i, j] = (f ∗ hx)[i, j].
∙ The horizontal gradient gy[i, j] = (f ∗ hy)[i, j].

∙ The gradient direction θ[i, j] = arctan
(

gy [i,j]
gx[i,j]

)
.

∙ The gradient magnitude |∇f | =
√

g2x[i, j] + g2y[i, j].

∙ Note that the gradients can contain negative values, so consider scaling them before
displaying them.

∙ Note also that the gradient direction is in radians.

41

gradient image implementation

∙ For an image f , a vertical gradient filter hx and a horizontal gradient filter hy , we can
compute:

∙ The vertical gradient gx[i, j] = (f ∗ hx)[i, j].
∙ The horizontal gradient gy[i, j] = (f ∗ hy)[i, j].

∙ The gradient direction θ[i, j] = arctan
(

gy [i,j]
gx[i,j]

)
.

∙ The gradient magnitude |∇f | =
√
g2x[i, j] + g2y[i, j].

∙ Note that the gradients can contain negative values, so consider scaling them before
displaying them.

∙ Note also that the gradient direction is in radians.

41

gradient image implementation

∙ For an image f , a vertical gradient filter hx and a horizontal gradient filter hy , we can
compute:

∙ The vertical gradient gx[i, j] = (f ∗ hx)[i, j].
∙ The horizontal gradient gy[i, j] = (f ∗ hy)[i, j].

∙ The gradient direction θ[i, j] = arctan
(

gy [i,j]
gx[i,j]

)
.

∙ The gradient magnitude |∇f | =
√
g2x[i, j] + g2y[i, j].

∙ Note that the gradients can contain negative values, so consider scaling them before
displaying them.

∙ Note also that the gradient direction is in radians.

41

gradient image implementation

∙ For an image f , a vertical gradient filter hx and a horizontal gradient filter hy , we can
compute:

∙ The vertical gradient gx[i, j] = (f ∗ hx)[i, j].
∙ The horizontal gradient gy[i, j] = (f ∗ hy)[i, j].

∙ The gradient direction θ[i, j] = arctan
(

gy [i,j]
gx[i,j]

)
.

∙ The gradient magnitude |∇f | =
√
g2x[i, j] + g2y[i, j].

∙ Note that the gradients can contain negative values, so consider scaling them before
displaying them.

∙ Note also that the gradient direction is in radians.

41

test image

(a) Shapes (b) Shapes and added white noise

42

1d asymmetrical gradient operators

(a) gx (b) gy

(c) |∇f| (d) θ

43

1d symmetrical gradient operators

(a) gx (b) gy

(c) |∇f| (d) θ

44

prewitt gradient operators

(a) gx (b) gy

(c) |∇f| (d) θ

45

sobel gradient operators

(a) gx (b) gy

(c) |∇f| (d) θ

46

frei-chen gradient operators

(a) gx (b) gy

(c) |∇f| (d) θ

47

5x5 sobel gradient operators

(a) gx (b) gy

(c) |∇f| (d) θ

48

test image

Figure 17: Buildings

49

1d asymmetrical gradient operators

(a) gx (b) gy

(c) |∇f| (d) θ

50

1d symmetrical gradient operators

(a) gx (b) gy

(c) |∇f| (d) θ

51

prewitt gradient operators

(a) gx (b) gy

(c) |∇f| (d) θ

52

sobel gradient operators

(a) gx (b) gy

(c) |∇f| (d) θ

53

frei-chen gradient operators

(a) gx (b) gy

(c) |∇f| (d) θ

54

5x5 sobel gradient operators

(a) gx (b) gy

(c) |∇f| (d) θ

55

location of edge

∙ The gradient magnitude has a
”wide response”, but we want a
exact, thin edge.

∙ The maximum response seems
reasonable.

Figure 24: The images to the right show the image and gradient
responses (normal on top, smoothed at the bottom) at the cross
section indicated by red in the image above.

56

location of edge

∙ The gradient magnitude has a
”wide response”, but we want a
exact, thin edge.

∙ The maximum response seems
reasonable.

Figure 24: The images to the right show the image and gradient
responses (normal on top, smoothed at the bottom) at the cross
section indicated by red in the image above.

56

the laplace operator

∙ For a continuous bivariate function f ,
the Laplace operator is given by

∇2f =
∂2f

∂x2
+

∂2f

∂y2

∙ Function curvature information:
∙ It is positive for decreasing gradient,
∙ negative for increasing gradient,
∙ zero at critical points in the gradient.

∙ Has two extrema for each edge, which is
why we used it for image improvement
earlier.

∙ If we use the location of the zero
crossing, we can get a thin, well defined
location of the edge.

57

the laplace operator

∙ For a continuous bivariate function f ,
the Laplace operator is given by

∇2f =
∂2f

∂x2
+

∂2f

∂y2

∙ Function curvature information:
∙ It is positive for decreasing gradient,
∙ negative for increasing gradient,
∙ zero at critical points in the gradient.

∙ Has two extrema for each edge, which is
why we used it for image improvement
earlier.

∙ If we use the location of the zero
crossing, we can get a thin, well defined
location of the edge.

57

the laplace operator

∙ For a continuous bivariate function f ,
the Laplace operator is given by

∇2f =
∂2f

∂x2
+

∂2f

∂y2

∙ Function curvature information:
∙ It is positive for decreasing gradient,
∙ negative for increasing gradient,
∙ zero at critical points in the gradient.

∙ Has two extrema for each edge, which is
why we used it for image improvement
earlier.

∙ If we use the location of the zero
crossing, we can get a thin, well defined
location of the edge.

57

the laplace operator

∙ For a continuous bivariate function f ,
the Laplace operator is given by

∇2f =
∂2f

∂x2
+

∂2f

∂y2

∙ Function curvature information:
∙ It is positive for decreasing gradient,
∙ negative for increasing gradient,
∙ zero at critical points in the gradient.

∙ Has two extrema for each edge, which is
why we used it for image improvement
earlier.

∙ If we use the location of the zero
crossing, we can get a thin, well defined
location of the edge.

57

1d rationale
Continuous

f(x)

f ′(x)

f ′′(x)

Discrete (3 neighbourhood)

f [x]

f [x+ 1/2]− f [x− 1/2]

f [x+ 1]− 2f [x] + f [x− 1]

Discrete (5 neighbourhood)

f [x]

f [x+ 1]− f [x− 1]

f [x+ 2]− 2f [x]− f [x− 2]

If we apply the mapping from the first row to the second row on the second row, we
arrive at the third row.

As is convention, we usually change the sign of the second derivative to arrive to the
Laplace operator

58

1d rationale
Continuous

f(x)

f ′(x)

f ′′(x)

Discrete (3 neighbourhood)

f [x]

f [x+ 1/2]− f [x− 1/2]

f [x+ 1]− 2f [x] + f [x− 1]

Discrete (5 neighbourhood)

f [x]

f [x+ 1]− f [x− 1]

f [x+ 2]− 2f [x]− f [x− 2]

If we apply the mapping from the first row to the second row on the second row, we
arrive at the third row.
As is convention, we usually change the sign of the second derivative to arrive to the
Laplace operator

58

2d laplace operator

∙ Use the 1D Laplace approximation in both directions

−∇2f = −∂2f

∂x2
− ∂2f

∂y2

≈ −(f [x+ 1, y]− 2f [x, y] + f [x− 1, y])− (f [x, y + 1]− 2f [x, y] + f [x, y − 1])

= −f [x+ 1, y]− f [x, y + 1] + 4f [x, y] + f [x− 1, y] + f [x, y + 1]

∙ This can be computed by convolving the image with the following filter 0 −1 0

−1 4 −1

0 −1 0



59

2d laplace operator

∙ Use the 1D Laplace approximation in both directions

−∇2f = −∂2f

∂x2
− ∂2f

∂y2

≈ −(f [x+ 1, y]− 2f [x, y] + f [x− 1, y])− (f [x, y + 1]− 2f [x, y] + f [x, y − 1])

= −f [x+ 1, y]− f [x, y + 1] + 4f [x, y] + f [x− 1, y] + f [x, y + 1]

∙ This can be computed by convolving the image with the following filter 0 −1 0

−1 4 −1

0 −1 0



59

full 3x3 laplace operator

∙ If we, in addition, use the 1D Laplace approximation on the diagonal directions, we
get the following filter  −1 −1 −1

−1 8 −1

−1 −1 −1



∙ This convolution filter is the same as we used earlier in this slides for point
detection and image sharpness enhancement.

60

full 3x3 laplace operator

∙ If we, in addition, use the 1D Laplace approximation on the diagonal directions, we
get the following filter  −1 −1 −1

−1 8 −1

−1 −1 −1


∙ This convolution filter is the same as we used earlier in this slides for point
detection and image sharpness enhancement.

60

laplace on second order polynomial

∙ Let an image be modeled as a second order polynomial, then

f(x, y) = k1 + k2x+ k3y + k4x
2 + k5xy + k6y

2

∂f

∂x
= k2 + 2k4x+ k5y

∂2f

∂x2
= 2k4

∂f

∂y
= k3 + k5x+ 2k6y

∂2f

∂y2
= 2k6

∙ The discrete version of this polynomial, with (x = 0, y = 0) in the center, is

k1 − k2 − k3 + k4 + k5 + k6 k1 − k2 + k4 k1 − k2 + k3 + k4 − k5 + k6

k1 − k3 + k6 k1 k1 + k3 + k6

k1 + k2 − k3 + k4 − k5 + k6 k1 + k2 + k4 k1 + k2 + k3 + k4 + k5 + k6

61

laplace on second order polynomial

∙ Let an image be modeled as a second order polynomial, then

f(x, y) = k1 + k2x+ k3y + k4x
2 + k5xy + k6y

2

∂f

∂x
= k2 + 2k4x+ k5y

∂2f

∂x2
= 2k4

∂f

∂y
= k3 + k5x+ 2k6y

∂2f

∂y2
= 2k6

∙ The discrete version of this polynomial, with (x = 0, y = 0) in the center, is

k1 − k2 − k3 + k4 + k5 + k6 k1 − k2 + k4 k1 − k2 + k3 + k4 − k5 + k6

k1 − k3 + k6 k1 k1 + k3 + k6

k1 + k2 − k3 + k4 − k5 + k6 k1 + k2 + k4 k1 + k2 + k3 + k4 + k5 + k6
61

laplace on second order polynomial

∙ The negative Laplacian in the continuous case is then

−∇2f = −2(k4 + k6)

∙ This is the same result that Laplace operators 0 −1 0

−1 4 −1

0 −1 0

 , and 1

3

 −1 −1 −1

−1 8 −1

−1 −1 −1


yield in the discrete case.

62

laplace on second order polynomial

∙ The negative Laplacian in the continuous case is then

−∇2f = −2(k4 + k6)

∙ This is the same result that Laplace operators 0 −1 0

−1 4 −1

0 −1 0

 , and 1

3

 −1 −1 −1

−1 8 −1

−1 −1 −1


yield in the discrete case.

62

larger laplace operator
Rationale: Approximate the laplace

−∇2f = −∂2f

∂x2
− ∂2f

∂y2

with a sum of sequential convolutions with some gradient operator.

Example using the Sobel operator

−∇2
5×5 = −


 1 2 1

0 0 0

−1 −2 −1

 ∗

 1 2 1

0 0 0

−1 −2 −1

+

 1 0 −1

2 0 −2

1 0 −1

 ∗

 1 0 −1

2 0 −2

1 0 −1




= −




1 4 6 4 1

0 0 0 0 0

−2 −8 −12 −8 −2

0 0 0 0 0

1 4 6 4 1

+


1 0 −2 0 1

4 0 −8 0 4

6 0 −12 0 6

4 0 −8 0 4

1 0 −2 0 1





=


−2 −4 −4 −4 −2

−4 0 8 0 −4

−4 8 24 8 −4

−4 0 8 0 −4

−2 −4 −4 −4 −2



63

larger laplace operator
Rationale: Approximate the laplace

−∇2f = −∂2f

∂x2
− ∂2f

∂y2

with a sum of sequential convolutions with some gradient operator.
Example using the Sobel operator

−∇2
5×5 = −


 1 2 1

0 0 0

−1 −2 −1

 ∗

 1 2 1

0 0 0

−1 −2 −1

+

 1 0 −1

2 0 −2

1 0 −1

 ∗

 1 0 −1

2 0 −2

1 0 −1




= −




1 4 6 4 1

0 0 0 0 0

−2 −8 −12 −8 −2

0 0 0 0 0

1 4 6 4 1

+


1 0 −2 0 1

4 0 −8 0 4

6 0 −12 0 6

4 0 −8 0 4

1 0 −2 0 1





=


−2 −4 −4 −4 −2

−4 0 8 0 −4

−4 8 24 8 −4

−4 0 8 0 −4

−2 −4 −4 −4 −2


63

3x3 sobel gradient magnitude vs 3x3 laplace

(a) Sobel gradient magnitude (b) Laplace

64

5x5 sobel gradient magnitude vs 5x5 laplace

(a) Sobel gradient magnitude (b) Laplace

65

noise sensitivity in laplace operator

Figure 29: First column: Images and intensity profiles of a ramp edge corrupted by Gaussian noise of zero mean and standard deviations of 0.0, 0.1, 1.0, and 10.0 intensity levels,
respectively. Second column: First derivative images and intensity profiles. Third column: Second-derivative images and intensity profiles.

66

laplace of gaussian (log) operator

∙ We made the gradient operators more robust to noise by building in a low-pass
filtering.

∙ We can do the same sith the Laplace operator.
∙ It is common to build in a Gaussian filter (G)

−∇2 ∗ (G ∗ f) = (−∇2 ∗G) ∗ f := LoG ∗ f

∙ We call the operator LoG = −∇2 ∗G the Laplace of Gaussian operator

67

laplace of gaussian (log) operator

∙ We made the gradient operators more robust to noise by building in a low-pass
filtering.

∙ We can do the same sith the Laplace operator.

∙ It is common to build in a Gaussian filter (G)

−∇2 ∗ (G ∗ f) = (−∇2 ∗G) ∗ f := LoG ∗ f

∙ We call the operator LoG = −∇2 ∗G the Laplace of Gaussian operator

67

laplace of gaussian (log) operator

∙ We made the gradient operators more robust to noise by building in a low-pass
filtering.

∙ We can do the same sith the Laplace operator.
∙ It is common to build in a Gaussian filter (G)

−∇2 ∗ (G ∗ f) = (−∇2 ∗G) ∗ f := LoG ∗ f

∙ We call the operator LoG = −∇2 ∗G the Laplace of Gaussian operator

67

laplace of gaussian (log) operator

∙ We made the gradient operators more robust to noise by building in a low-pass
filtering.

∙ We can do the same sith the Laplace operator.
∙ It is common to build in a Gaussian filter (G)

−∇2 ∗ (G ∗ f) = (−∇2 ∗G) ∗ f := LoG ∗ f

∙ We call the operator LoG = −∇2 ∗G the Laplace of Gaussian operator

67

example — 5x5 log

If we convolve a 3× 3 (unnormalized) Gaussian filter G with a 3× 3 Laplacian filter −∇2

G =

 1 2 1

2 4 2

1 2 1

 , −∇2 =

 −1 −1 −1

−1 8 −1

−1 −1 −1


we get a 5× 5 LoG filter

LoG =


−1 −3 −4 −3 −1

−3 0 6 0 −3

−4 6 20 6 −4

−3 0 6 0 −3

−1 −3 −4 −3 −1

 .

68

example — 7x7 log

If we convolve a 3× 3 (unnormalized) Gaussian filter G with a 5× 5 Laplacian filter −∇2

G =

 1 2 1

2 4 2

1 2 1

 , −∇2 =


−2 −4 −4 −4 −2

−4 0 8 0 −4

−4 8 24 8 −4

−4 0 8 0 −4

−2 −4 −4 −4 −2


we get a 7× 7 LoG filter

LoG =



−2 −8 −14 −16 −14 −8 −2

−8 −24 −24 −16 −24 −24 −8

−14 −24 30 80 30 −24 −14

−16 −16 80 160 80 −16 −16

−14 −24 30 80 30 −24 −14

−8 −24 −24 −16 −24 −24 −8

−2 −8 −14 −16 −14 −8 −2


.

69

comparison laplace and log

(a) Noisy shapes (b) 5x5 Laplace

(c) 5x5 LoG (d) 7x7 LoG

70

two ways to create the log operator

∙ Via convolution As we have seen earlier, we can construct a LoG operator by
convolving a Gaussian and a Laplacian filter.

∙ Via continuous function Another way is to compute the analytic, continuous LoG
function, and sample from it. The continuous function results from taking the
Laplacian on a Gaussian function.

∙ These two versions will in general not produce completely equal filters, but they are
nevertheless both called LoG filters.

71

two ways to create the log operator

∙ Via convolution As we have seen earlier, we can construct a LoG operator by
convolving a Gaussian and a Laplacian filter.

∙ Via continuous function Another way is to compute the analytic, continuous LoG
function, and sample from it. The continuous function results from taking the
Laplacian on a Gaussian function.

∙ These two versions will in general not produce completely equal filters, but they are
nevertheless both called LoG filters.

71

two ways to create the log operator

∙ Via convolution As we have seen earlier, we can construct a LoG operator by
convolving a Gaussian and a Laplacian filter.

∙ Via continuous function Another way is to compute the analytic, continuous LoG
function, and sample from it. The continuous function results from taking the
Laplacian on a Gaussian function.

∙ These two versions will in general not produce completely equal filters, but they are
nevertheless both called LoG filters.

71

the continuous log function

Assume you have a zero-mean 2D Gaussian with a diagonal covariance σ2I

G(x, y) =
1

2πσ2
exp

{
−x2 + y2

2σ2

}
.

It’s first order derivatives are
∂G

∂x
(x, y) = − x

2πσ4
exp

{
−x2 + y2

2σ2

}
,

∂G

∂y
(x, y) = − y

2πσ4
exp

{
−x2 + y2

2σ2

}
.

It’s second order derivatives are

∂2G

∂x2
(x, y) = −

1− x2

σ2

2πσ4
exp

{
−x2 + y2

2σ2

}
,

∂2G

∂y2
(x, y) = −

1− y2

σ2

2πσ4
exp

{
−x2 + y2

2σ2

}
.

The LoG is then the Laplacian (the negative sum of the second order derivatives above)

−∇2G(x, y) =
1

2πσ4

(
2− x2 + y2

σ2

)
exp

{
−x2 + y2

2σ2

}
.

72

the continuous log function

Assume you have a zero-mean 2D Gaussian with a diagonal covariance σ2I

G(x, y) =
1

2πσ2
exp

{
−x2 + y2

2σ2

}
.

It’s first order derivatives are
∂G

∂x
(x, y) = − x

2πσ4
exp

{
−x2 + y2

2σ2

}
,

∂G

∂y
(x, y) = − y

2πσ4
exp

{
−x2 + y2

2σ2

}
.

It’s second order derivatives are

∂2G

∂x2
(x, y) = −

1− x2

σ2

2πσ4
exp

{
−x2 + y2

2σ2

}
,

∂2G

∂y2
(x, y) = −

1− y2

σ2

2πσ4
exp

{
−x2 + y2

2σ2

}
.

The LoG is then the Laplacian (the negative sum of the second order derivatives above)

−∇2G(x, y) =
1

2πσ4

(
2− x2 + y2

σ2

)
exp

{
−x2 + y2

2σ2

}
.

72

the continuous log function

Assume you have a zero-mean 2D Gaussian with a diagonal covariance σ2I

G(x, y) =
1

2πσ2
exp

{
−x2 + y2

2σ2

}
.

It’s first order derivatives are
∂G

∂x
(x, y) = − x

2πσ4
exp

{
−x2 + y2

2σ2

}
,

∂G

∂y
(x, y) = − y

2πσ4
exp

{
−x2 + y2

2σ2

}
.

It’s second order derivatives are

∂2G

∂x2
(x, y) = −

1− x2

σ2

2πσ4
exp

{
−x2 + y2

2σ2

}
,

∂2G

∂y2
(x, y) = −

1− y2

σ2

2πσ4
exp

{
−x2 + y2

2σ2

}
.

The LoG is then the Laplacian (the negative sum of the second order derivatives above)

−∇2G(x, y) =
1

2πσ4

(
2− x2 + y2

σ2

)
exp

{
−x2 + y2

2σ2

}
.

72

the continuous log function

Assume you have a zero-mean 2D Gaussian with a diagonal covariance σ2I

G(x, y) =
1

2πσ2
exp

{
−x2 + y2

2σ2

}
.

It’s first order derivatives are
∂G

∂x
(x, y) = − x

2πσ4
exp

{
−x2 + y2

2σ2

}
,

∂G

∂y
(x, y) = − y

2πσ4
exp

{
−x2 + y2

2σ2

}
.

It’s second order derivatives are

∂2G

∂x2
(x, y) = −

1− x2

σ2

2πσ4
exp

{
−x2 + y2

2σ2

}
,

∂2G

∂y2
(x, y) = −

1− y2

σ2

2πσ4
exp

{
−x2 + y2

2σ2

}
.

The LoG is then the Laplacian (the negative sum of the second order derivatives above)

−∇2G(x, y) =
1

2πσ4

(
2− x2 + y2

σ2

)
exp

{
−x2 + y2

2σ2

}
.

72

log filter from the log function

∙ We arrive at a LoG operator by sampling
the LoG function at integer x ad y.

∙ We usually only sample from the area
where the function is non-zero.
Therefore, normally, the size of the
operator is ∼ 3w ≈ 8.5σ, where
w = 2

√
2σ is the size of the LoG kernel

(the positive peak in the middle).

Figure 31: LoG function. (a) 3D plot. (b) Image display. (c) Cross-section showing
zero-crossings. (d) 5x5 mask approximation to the shape in (b).

73

log filter from the log function

∙ We arrive at a LoG operator by sampling
the LoG function at integer x ad y.

∙ We usually only sample from the area
where the function is non-zero.
Therefore, normally, the size of the
operator is ∼ 3w ≈ 8.5σ, where
w = 2

√
2σ is the size of the LoG kernel

(the positive peak in the middle).

Figure 31: LoG function. (a) 3D plot. (b) Image display. (c) Cross-section showing
zero-crossings. (d) 5x5 mask approximation to the shape in (b).

73

usage of log operators

∙ The Laplace operator detects edges, but is sensitive to noise.

∙ One must often apply a low-pass filter prior to Laplace filtration.
∙ A LoG operator combines the low-pass and the Laplace filtering.

74

usage of log operators

∙ The Laplace operator detects edges, but is sensitive to noise.
∙ One must often apply a low-pass filter prior to Laplace filtration.

∙ A LoG operator combines the low-pass and the Laplace filtering.

74

usage of log operators

∙ The Laplace operator detects edges, but is sensitive to noise.
∙ One must often apply a low-pass filter prior to Laplace filtration.
∙ A LoG operator combines the low-pass and the Laplace filtering.

74

edge detection and log — structures

∙ Rule of thumb for structures: The LoG-kernel needs to be smaller than the structure
∙ If the structure is smaller than half the LoG-kernel, the zero-crossing is outside the edge
limits.

∙ If the structure is larger then half the LoG-kernel, the zero-crossing is exactly at the edge
limits.

∙ If the structure is in between, it depends on the discretization and the
LoG-approximation.

(a) Thin structure (b) Wide structure

Figure 32: LoG function (blue), rectangular structures (black), and the convolution respons (red).

75

edge detection and log — structures

∙ Rule of thumb for structures: The LoG-kernel needs to be smaller than the structure
∙ If the structure is smaller than half the LoG-kernel, the zero-crossing is outside the edge
limits.

∙ If the structure is larger then half the LoG-kernel, the zero-crossing is exactly at the edge
limits.

∙ If the structure is in between, it depends on the discretization and the
LoG-approximation.

(a) Thin structure (b) Wide structure

Figure 32: LoG function (blue), rectangular structures (black), and the convolution respons (red).

75

edge detection and log — structures

∙ Rule of thumb for structures: The LoG-kernel needs to be smaller than the structure
∙ If the structure is smaller than half the LoG-kernel, the zero-crossing is outside the edge
limits.

∙ If the structure is larger then half the LoG-kernel, the zero-crossing is exactly at the edge
limits.

∙ If the structure is in between, it depends on the discretization and the
LoG-approximation.

(a) Thin structure (b) Wide structure

Figure 32: LoG function (blue), rectangular structures (black), and the convolution respons (red).
75

edge detection and log — ramps

∙ Rule of thumb for ramps: The LoG filter must be larger than the ramp

∙ If the ramp is wider than the LoG-filter, the zero-crossing is not unique.
∙ Otherwise the zero-crossing is at the center of the ramp.
∙ Because of noise, we often need the LoG-kernel to be much larger than the width of the
ramp.

∙ In general: Choose the LoG-kernel and filter size thoughtfully. The size should first
be controlled by the standard deviation in the Gaussian.

(a) Thin ramp (b) Wide ramp

Figure 33: LoG function (blue), ramp (black), and the convolution respons (red).

76

edge detection and log — ramps

∙ Rule of thumb for ramps: The LoG filter must be larger than the ramp
∙ If the ramp is wider than the LoG-filter, the zero-crossing is not unique.

∙ Otherwise the zero-crossing is at the center of the ramp.
∙ Because of noise, we often need the LoG-kernel to be much larger than the width of the
ramp.

∙ In general: Choose the LoG-kernel and filter size thoughtfully. The size should first
be controlled by the standard deviation in the Gaussian.

(a) Thin ramp (b) Wide ramp

Figure 33: LoG function (blue), ramp (black), and the convolution respons (red).

76

edge detection and log — ramps

∙ Rule of thumb for ramps: The LoG filter must be larger than the ramp
∙ If the ramp is wider than the LoG-filter, the zero-crossing is not unique.
∙ Otherwise the zero-crossing is at the center of the ramp.

∙ Because of noise, we often need the LoG-kernel to be much larger than the width of the
ramp.

∙ In general: Choose the LoG-kernel and filter size thoughtfully. The size should first
be controlled by the standard deviation in the Gaussian.

(a) Thin ramp (b) Wide ramp

Figure 33: LoG function (blue), ramp (black), and the convolution respons (red).

76

edge detection and log — ramps

∙ Rule of thumb for ramps: The LoG filter must be larger than the ramp
∙ If the ramp is wider than the LoG-filter, the zero-crossing is not unique.
∙ Otherwise the zero-crossing is at the center of the ramp.
∙ Because of noise, we often need the LoG-kernel to be much larger than the width of the
ramp.

∙ In general: Choose the LoG-kernel and filter size thoughtfully. The size should first
be controlled by the standard deviation in the Gaussian.

(a) Thin ramp (b) Wide ramp

Figure 33: LoG function (blue), ramp (black), and the convolution respons (red).

76

edge detection and log — ramps

∙ Rule of thumb for ramps: The LoG filter must be larger than the ramp
∙ If the ramp is wider than the LoG-filter, the zero-crossing is not unique.
∙ Otherwise the zero-crossing is at the center of the ramp.
∙ Because of noise, we often need the LoG-kernel to be much larger than the width of the
ramp.

∙ In general: Choose the LoG-kernel and filter size thoughtfully. The size should first
be controlled by the standard deviation in the Gaussian.

(a) Thin ramp (b) Wide ramp

Figure 33: LoG function (blue), ramp (black), and the convolution respons (red).
76

robust edge detection

There is normally three steps in robust edge detection.

1. Noise reduction. Try to remove as much noise as possible withot smoothing the
edges too much. Low-pass filtering.

2. Edge-filtering. Emphasize the edges. High-pass filtering, e.g. gradient operators.
3. Edge-localization. Post-processing of the result from the edge-filtering to find the

exact location of the edges. Ideally the edge should be 1 pixel wide, and at the actual
location of the edge in the image.

77

robust edge detection

There is normally three steps in robust edge detection.

1. Noise reduction. Try to remove as much noise as possible withot smoothing the
edges too much. Low-pass filtering.

2. Edge-filtering. Emphasize the edges. High-pass filtering, e.g. gradient operators.
3. Edge-localization. Post-processing of the result from the edge-filtering to find the

exact location of the edges. Ideally the edge should be 1 pixel wide, and at the actual
location of the edge in the image.

77

robust edge detection

There is normally three steps in robust edge detection.

1. Noise reduction. Try to remove as much noise as possible withot smoothing the
edges too much. Low-pass filtering.

2. Edge-filtering. Emphasize the edges. High-pass filtering, e.g. gradient operators.
3. Edge-localization. Post-processing of the result from the edge-filtering to find the

exact location of the edges. Ideally the edge should be 1 pixel wide, and at the actual
location of the edge in the image.

77

robust edge detection

There is normally three steps in robust edge detection.

1. Noise reduction. Try to remove as much noise as possible withot smoothing the
edges too much. Low-pass filtering.

2. Edge-filtering. Emphasize the edges. High-pass filtering, e.g. gradient operators.

3. Edge-localization. Post-processing of the result from the edge-filtering to find the
exact location of the edges. Ideally the edge should be 1 pixel wide, and at the actual
location of the edge in the image.

77

robust edge detection

There is normally three steps in robust edge detection.

1. Noise reduction. Try to remove as much noise as possible withot smoothing the
edges too much. Low-pass filtering.

2. Edge-filtering. Emphasize the edges. High-pass filtering, e.g. gradient operators.
3. Edge-localization. Post-processing of the result from the edge-filtering to find the

exact location of the edges. Ideally the edge should be 1 pixel wide, and at the actual
location of the edge in the image.

77

hallmarks of a good edge detector

∙ Finds all edges, and only the relevant edges.

∙ The position of the detected edge agrees with the actual location of the edge in the
image.

∙ One edge respons for each edge.
∙ Robust against noise. Often need to compromise the robustness and location
accuracy.

78

hallmarks of a good edge detector

∙ Finds all edges, and only the relevant edges.
∙ The position of the detected edge agrees with the actual location of the edge in the
image.

∙ One edge respons for each edge.
∙ Robust against noise. Often need to compromise the robustness and location
accuracy.

78

hallmarks of a good edge detector

∙ Finds all edges, and only the relevant edges.
∙ The position of the detected edge agrees with the actual location of the edge in the
image.

∙ One edge respons for each edge.

∙ Robust against noise. Often need to compromise the robustness and location
accuracy.

78

hallmarks of a good edge detector

∙ Finds all edges, and only the relevant edges.
∙ The position of the detected edge agrees with the actual location of the edge in the
image.

∙ One edge respons for each edge.
∙ Robust against noise. Often need to compromise the robustness and location
accuracy.

78

canny’s edge detection — idea

∙ Make an edge-detector that is optimal given these three criteria:

∙ As good detection as possible (every edge, and only edges).
∙ Good edge location.
∙ One single respons for each edge.

79

canny’s edge detection — idea

∙ Make an edge-detector that is optimal given these three criteria:
∙ As good detection as possible (every edge, and only edges).

∙ Good edge location.
∙ One single respons for each edge.

79

canny’s edge detection — idea

∙ Make an edge-detector that is optimal given these three criteria:
∙ As good detection as possible (every edge, and only edges).
∙ Good edge location.

∙ One single respons for each edge.

79

canny’s edge detection — idea

∙ Make an edge-detector that is optimal given these three criteria:
∙ As good detection as possible (every edge, and only edges).
∙ Good edge location.
∙ One single respons for each edge.

79

canny’s edge detection — algorithm

1. Low-pass filtering using a Gaussian filter.

2. Compute the gradient magnitude and gradient direction (angle).
3. Thinning the gradient magnitude orthogonally on the edge.
4. Hysteresis thresholding. Given the thinned result g and two thresholds tw and ts:

4.1 Tag all pixels (x, y) where g[x, y] ≥ ts.
4.2 For all pixels where tw ≤ g[x, y] < ts: If a neighbour (in a 4 or 8 neighbourhood) is

tagged, then tag (x, y) as well.
4.3 Repeat from (4.2) until convergence (no new tagged pixels).

80

canny’s edge detection — algorithm

1. Low-pass filtering using a Gaussian filter.
2. Compute the gradient magnitude and gradient direction (angle).

3. Thinning the gradient magnitude orthogonally on the edge.
4. Hysteresis thresholding. Given the thinned result g and two thresholds tw and ts:

4.1 Tag all pixels (x, y) where g[x, y] ≥ ts.
4.2 For all pixels where tw ≤ g[x, y] < ts: If a neighbour (in a 4 or 8 neighbourhood) is

tagged, then tag (x, y) as well.
4.3 Repeat from (4.2) until convergence (no new tagged pixels).

80

canny’s edge detection — algorithm

1. Low-pass filtering using a Gaussian filter.
2. Compute the gradient magnitude and gradient direction (angle).
3. Thinning the gradient magnitude orthogonally on the edge.

4. Hysteresis thresholding. Given the thinned result g and two thresholds tw and ts:
4.1 Tag all pixels (x, y) where g[x, y] ≥ ts.
4.2 For all pixels where tw ≤ g[x, y] < ts: If a neighbour (in a 4 or 8 neighbourhood) is

tagged, then tag (x, y) as well.
4.3 Repeat from (4.2) until convergence (no new tagged pixels).

80

canny’s edge detection — algorithm

1. Low-pass filtering using a Gaussian filter.
2. Compute the gradient magnitude and gradient direction (angle).
3. Thinning the gradient magnitude orthogonally on the edge.
4. Hysteresis thresholding. Given the thinned result g and two thresholds tw and ts:

4.1 Tag all pixels (x, y) where g[x, y] ≥ ts.
4.2 For all pixels where tw ≤ g[x, y] < ts: If a neighbour (in a 4 or 8 neighbourhood) is

tagged, then tag (x, y) as well.
4.3 Repeat from (4.2) until convergence (no new tagged pixels).

80

edge detection — comparison of methods

Figure 34: House

(a) 3x3 Sobel gradient magnitude, T = 10% of max (b) 5x5 Laplace, T = 10% of max

(c) 7x7 LoG, T = 10% of max (d) Canny. Hysteresis threshold: 100 and 200

Figure 35: Edge detectors

81

edge detection — comparison of methods

Figure 36: CT scanning of head

(a) 3x3 Sobel gradient magnitude, T = 20% of max (b) 5x5 Laplace, T = 10% of max

(c) 7x7 LoG, T = 15% of max (d) Canny. Hysteresis threshold: 100 and 200

Figure 37: Edge detectors
82

summary

∙ We have derived simple edge-detectors.

∙ Gradient operators smooths in one direction and emphasizes edges in the other
(orthogonal) direction.

∙ Can compute both edge magnitude and edge direction from gradient operators.
∙ The Laplace operator localizes the edge precisely, but emphasizes noise.
∙ The LoG-operator is a more noise tolerant version of the Laplace.
∙ Canny’s edge detector compromizes noise reduction and edge localization.

83

summary

∙ We have derived simple edge-detectors.
∙ Gradient operators smooths in one direction and emphasizes edges in the other
(orthogonal) direction.

∙ Can compute both edge magnitude and edge direction from gradient operators.
∙ The Laplace operator localizes the edge precisely, but emphasizes noise.
∙ The LoG-operator is a more noise tolerant version of the Laplace.
∙ Canny’s edge detector compromizes noise reduction and edge localization.

83

summary

∙ We have derived simple edge-detectors.
∙ Gradient operators smooths in one direction and emphasizes edges in the other
(orthogonal) direction.

∙ Can compute both edge magnitude and edge direction from gradient operators.

∙ The Laplace operator localizes the edge precisely, but emphasizes noise.
∙ The LoG-operator is a more noise tolerant version of the Laplace.
∙ Canny’s edge detector compromizes noise reduction and edge localization.

83

summary

∙ We have derived simple edge-detectors.
∙ Gradient operators smooths in one direction and emphasizes edges in the other
(orthogonal) direction.

∙ Can compute both edge magnitude and edge direction from gradient operators.
∙ The Laplace operator localizes the edge precisely, but emphasizes noise.

∙ The LoG-operator is a more noise tolerant version of the Laplace.
∙ Canny’s edge detector compromizes noise reduction and edge localization.

83

summary

∙ We have derived simple edge-detectors.
∙ Gradient operators smooths in one direction and emphasizes edges in the other
(orthogonal) direction.

∙ Can compute both edge magnitude and edge direction from gradient operators.
∙ The Laplace operator localizes the edge precisely, but emphasizes noise.
∙ The LoG-operator is a more noise tolerant version of the Laplace.

∙ Canny’s edge detector compromizes noise reduction and edge localization.

83

summary

∙ We have derived simple edge-detectors.
∙ Gradient operators smooths in one direction and emphasizes edges in the other
(orthogonal) direction.

∙ Can compute both edge magnitude and edge direction from gradient operators.
∙ The Laplace operator localizes the edge precisely, but emphasizes noise.
∙ The LoG-operator is a more noise tolerant version of the Laplace.
∙ Canny’s edge detector compromizes noise reduction and edge localization.

83

Questions?

84

	High pass filters
	Edge-detection

