
mid term repetition

Ole-Johan Skrede
15.03.2017

INF2310 - Digital Image Processing

Department of Informatics
The Faculty of Mathematics and Natural Sciences
University of Oslo

today’s lecture

∙ Optical systems
∙ Rayleigh criterion
∙ Object-image relation

∙ Neighbourhood operations and filters
∙ Convolution
∙ Low-pass filtering
∙ High-pass filtering
∙ Edge-detection filtering

∙ Color imaging
∙ Color models and spaces
∙ Color images

1

today’s lecture

∙ Optical systems
∙ Rayleigh criterion
∙ Object-image relation

∙ Neighbourhood operations and filters
∙ Convolution
∙ Low-pass filtering
∙ High-pass filtering
∙ Edge-detection filtering

∙ Color imaging
∙ Color models and spaces
∙ Color images

1

today’s lecture

∙ Optical systems
∙ Rayleigh criterion
∙ Object-image relation

∙ Neighbourhood operations and filters
∙ Convolution
∙ Low-pass filtering
∙ High-pass filtering
∙ Edge-detection filtering

∙ Color imaging
∙ Color models and spaces
∙ Color images

1

optical systems

point source

∙ We will study the light ray trajectory from a point source.
∙ A point will be imaged as a ”blurred” version of itself.
∙ The reason for this is two unrelated phenomena: abberation and diffraction.

Figure 1: Light wave propagation from point source through circular aperture.
3

point spread function

∙ The point spread function (psf) describes the response from of an imaging system
on a point source.

∙ The resulting image is obtained by convoluting the source with the point spread
function.

∙ Can be used to measure the blurring of a point object, and is a measure of the
quality of the imaging system.

Figure 2: Point spread function. (Source: By Default007 - Own work, Public Domain https://commons.wikimedia.org/w/index.php?curid=877065)
4

https://commons.wikimedia.org/w/index.php?curid=877065

optical abberation

∙ Distortion in the image formed by an optical system.
∙ Arise because of limitations in optical components such as lenses and mirrors.
∙ There are many types of optical abberations, and they can to a large extent be
repaired.

Figure 3: Spherical abberation. Rays from the edge of the lens focus points along a line in stead of at a single point. (Source: http://www.edmundoptics.com)

5

http://www.edmundoptics.com

diffraction

∙ Caused by wavefronts of propagating waves bending in the neighborhood of
obstacles.

∙ A fundamental limit in imaging.
∙ Possible to ”avoid” this limit with super-resolution imaging.

Figure 4: Illustration of diffraction pattern from a slit of width four wavelengths with an incident plane wave. (Source: By Dicklyon at English Wikipedia - Transferred from
en.wikipedia to Commons by Shizhao using CommonsHelper., Public Domain, https://commons.wikimedia.org/w/index.php?curid=5699291)

6

diffraction limited system

∙ The abberation in a system can often be handled by adjusting the optics.

∙ The diffraction is a physical limit due to the wave propagation property of light.
∙ A system is said to be diffraction limited if diffraction is the dominating the point
spread function. That is, if the spatial resolution is as good as the instrument’s
theoretical limit.

∙ The resulting image from a point source imaged from a diffraction limited optical
instrument is termed a Airy disk.

Figure 5: Airy disk

7

diffraction limited system

∙ The abberation in a system can often be handled by adjusting the optics.
∙ The diffraction is a physical limit due to the wave propagation property of light.

∙ A system is said to be diffraction limited if diffraction is the dominating the point
spread function. That is, if the spatial resolution is as good as the instrument’s
theoretical limit.

∙ The resulting image from a point source imaged from a diffraction limited optical
instrument is termed a Airy disk.

Figure 5: Airy disk

7

diffraction limited system

∙ The abberation in a system can often be handled by adjusting the optics.
∙ The diffraction is a physical limit due to the wave propagation property of light.
∙ A system is said to be diffraction limited if diffraction is the dominating the point
spread function. That is, if the spatial resolution is as good as the instrument’s
theoretical limit.

∙ The resulting image from a point source imaged from a diffraction limited optical
instrument is termed a Airy disk.

Figure 5: Airy disk

7

diffraction limited system

∙ The abberation in a system can often be handled by adjusting the optics.
∙ The diffraction is a physical limit due to the wave propagation property of light.
∙ A system is said to be diffraction limited if diffraction is the dominating the point
spread function. That is, if the spatial resolution is as good as the instrument’s
theoretical limit.

∙ The resulting image from a point source imaged from a diffraction limited optical
instrument is termed a Airy disk.

Figure 5: Airy disk

7

spatial resolution

∙ Spatial (angular) resolution describes the ability of an imaging system to distinguish
details in an image.

∙ Because of the blurring, described by the point spread function, there is a limit to
the resolving ability of an image.

Figure 6: Resulting image from two point sources after being imaged by a circular aperture.

8

spatial resolution

∙ Spatial (angular) resolution describes the ability of an imaging system to distinguish
details in an image.

∙ Because of the blurring, described by the point spread function, there is a limit to
the resolving ability of an image.

Figure 6: Resulting image from two point sources after being imaged by a circular aperture.
8

rayleigh criterion

∙ The Rayleigh criterion describes the
smallest distance between two light
point sources that we need in order to
obseve them as separate objects.

∙ The Rayleigh criterion: Two objects are
just dissolved when the mode of the
intensity function from one of the
objects overlaps with the first zero of
the second object’s intensity function.

Figure 7: Airy disks of two objects. Well dissolved (top), just dissolved (middle), not
dissolved (bottom). (Source: By Spencer Bliven - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=31456019)

9

rayleigh criterion

∙ The Rayleigh criterion describes the
smallest distance between two light
point sources that we need in order to
obseve them as separate objects.

∙ The Rayleigh criterion: Two objects are
just dissolved when the mode of the
intensity function from one of the
objects overlaps with the first zero of
the second object’s intensity function.

Figure 7: Airy disks of two objects. Well dissolved (top), just dissolved (middle), not
dissolved (bottom). (Source: By Spencer Bliven - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=31456019)

9

frauenhofer diffraction pattern for a circular aperture

Figure 8: Diffraction pattern from circular aperture.

I(θ) ∝
[
2J1(kra sin θ)

kra sin θ

]2
(1)

∙ J1: A first order Bessel function of the first kind
∙ k = 2π

λ : Wave number of the propagating light
∙ λ: Light wave length.
∙ ra: Aperture radius.
∙ θ Angle to the first zero.

10

rayleigh criterion equation

∙ The intensity function in eq. (1) is zero when the Bessel function is zero.

∙ The first zero of a Bessel function1 J1(x) occurs at x ≈ 3.8317,
∙ Thus

kra sin θ ≈ 3.8317

or

sin θ ≈ 1.22
λ

da
(2)

which is famously known as the Rayleigh criterion.

1Bessel functions are solutions to a particular set of differential equations, and the mathematics is somewhat complicated. But feel free to stydy them on your own if you
want to understand how the roots are found.

11

rayleigh criterion equation

∙ The intensity function in eq. (1) is zero when the Bessel function is zero.
∙ The first zero of a Bessel function1 J1(x) occurs at x ≈ 3.8317,

∙ Thus

kra sin θ ≈ 3.8317

or

sin θ ≈ 1.22
λ

da
(2)

which is famously known as the Rayleigh criterion.

1Bessel functions are solutions to a particular set of differential equations, and the mathematics is somewhat complicated. But feel free to stydy them on your own if you
want to understand how the roots are found.

11

rayleigh criterion equation

∙ The intensity function in eq. (1) is zero when the Bessel function is zero.
∙ The first zero of a Bessel function1 J1(x) occurs at x ≈ 3.8317,
∙ Thus

kra sin θ ≈ 3.8317

or

sin θ ≈ 1.22
λ

da
(2)

which is famously known as the Rayleigh criterion.

1Bessel functions are solutions to a particular set of differential equations, and the mathematics is somewhat complicated. But feel free to stydy them on your own if you
want to understand how the roots are found.

11

rayleigh criterion, angular resolution

Figure 9: Schematic figure of distances.

For very small θ, sin θ ≈ θ. We can then approximate eq. (2) to

θ ≈ 1.22
λ

da

and furthermore, ho ≈ do, yielding

yo ≈ 1.22
λ

da
do

This is the smallest distance we are able to dissolve in an image.
12

paraxial ray approximation

Figure 10: Idealised imaging system

(i) An incident ray which is parallel to the optic axis is refracted through the imaging
focal point Fi.

(ii) An incident ray which passes through the object focal point Fo, is refracted parallel
to the optic axis.

(iii) An incident ray which passes through the optic center is refracted with the same
refraction angle as incident angle (will not change direction).

13

paraxial ray approximation

Figure 10: Idealised imaging system

(i) An incident ray which is parallel to the optic axis is refracted through the imaging
focal point Fi.

(ii) An incident ray which passes through the object focal point Fo, is refracted parallel
to the optic axis.

(iii) An incident ray which passes through the optic center is refracted with the same
refraction angle as incident angle (will not change direction).

13

paraxial ray approximation

Figure 10: Idealised imaging system

(i) An incident ray which is parallel to the optic axis is refracted through the imaging
focal point Fi.

(ii) An incident ray which passes through the object focal point Fo, is refracted parallel
to the optic axis.

(iii) An incident ray which passes through the optic center is refracted with the same
refraction angle as incident angle (will not change direction).

13

object-image relation

The rays following the respective patterns are illustrated in fig. 10. From (iii), we see that
the angle θ is the same, and therefore

yo
do

=
yi
di
. (3)

14

object-image relation

Likewise, from the two equal angles α on ray (i), we get that

yo
fi

=
yi

di − fi
. (4)

15

object-image relation

Rearranging eq. (3) yields

yo
yi

=
do
di

which, when combined with the relation in eq. (4) yelds

do
di

=
fi

di − fi
. (5)

16

object-image relation

Equation (5) can be rearranged to the familiar form

1

fi
=

1

di
+

1

do
. (6)

Equation (6) is sometimes referred to as the thin lens equation.

17

object-image relation

Using eq. (3), we get that

1

fi
=

1

do

(
yo
yi

+ 1

)
,

which we can rearrange to

yi =
yofi

do − fi

This gives us (for our small, idealised imaging system) the relation between the actual
size in the object plane yo and the observed size in the imaging plane yi. 18

spatial filtering

convolution

In image analysis1, convolution is a binary operation, taking an image f and a filter (also
an image) w, and producing an image g. We use an asterisk ∗ to denote this operation

f ∗ w = g.

For an element [x, y], the operation is defined as

g[x, y] = (f ∗ w)[x, y] :=
S∑

s=−S

T∑
t=−T

f [x− s, y − t]w[s, t].

1This is really just an ordinary discrete convolution, the discrete version of a continuous convolution.
20

convolution

In image analysis1, convolution is a binary operation, taking an image f and a filter (also
an image) w, and producing an image g. We use an asterisk ∗ to denote this operation

f ∗ w = g.

For an element [x, y], the operation is defined as

g[x, y] = (f ∗ w)[x, y] :=
S∑

s=−S

T∑
t=−T

f [x− s, y − t]w[s, t].

1This is really just an ordinary discrete convolution, the discrete version of a continuous convolution.
20

useful mental image

A useful way of thinking about convolution is to

1. Rotate the filter 180 degrees.
2. Place it on top of the image in the image’s top left corner.
3. ”Slide” it across each column until you hit the right boundary of the image.
4. Start from the left again, but now, one row below the previous.
5. Repeat step 3. followed by 4. until you have covered the whole image.

Also, check out this nice interactive visualization:
http://setosa.io/ev/image-kernels/

21

http://setosa.io/ev/image-kernels/

useful mental image

A useful way of thinking about convolution is to

1. Rotate the filter 180 degrees.

2. Place it on top of the image in the image’s top left corner.
3. ”Slide” it across each column until you hit the right boundary of the image.
4. Start from the left again, but now, one row below the previous.
5. Repeat step 3. followed by 4. until you have covered the whole image.

Also, check out this nice interactive visualization:
http://setosa.io/ev/image-kernels/

21

http://setosa.io/ev/image-kernels/

useful mental image

A useful way of thinking about convolution is to

1. Rotate the filter 180 degrees.
2. Place it on top of the image in the image’s top left corner.

3. ”Slide” it across each column until you hit the right boundary of the image.
4. Start from the left again, but now, one row below the previous.
5. Repeat step 3. followed by 4. until you have covered the whole image.

Also, check out this nice interactive visualization:
http://setosa.io/ev/image-kernels/

21

http://setosa.io/ev/image-kernels/

useful mental image

A useful way of thinking about convolution is to

1. Rotate the filter 180 degrees.
2. Place it on top of the image in the image’s top left corner.
3. ”Slide” it across each column until you hit the right boundary of the image.

4. Start from the left again, but now, one row below the previous.
5. Repeat step 3. followed by 4. until you have covered the whole image.

Also, check out this nice interactive visualization:
http://setosa.io/ev/image-kernels/

21

http://setosa.io/ev/image-kernels/

useful mental image

A useful way of thinking about convolution is to

1. Rotate the filter 180 degrees.
2. Place it on top of the image in the image’s top left corner.
3. ”Slide” it across each column until you hit the right boundary of the image.
4. Start from the left again, but now, one row below the previous.

5. Repeat step 3. followed by 4. until you have covered the whole image.

Also, check out this nice interactive visualization:
http://setosa.io/ev/image-kernels/

21

http://setosa.io/ev/image-kernels/

useful mental image

A useful way of thinking about convolution is to

1. Rotate the filter 180 degrees.
2. Place it on top of the image in the image’s top left corner.
3. ”Slide” it across each column until you hit the right boundary of the image.
4. Start from the left again, but now, one row below the previous.
5. Repeat step 3. followed by 4. until you have covered the whole image.

Also, check out this nice interactive visualization:
http://setosa.io/ev/image-kernels/

21

http://setosa.io/ev/image-kernels/

useful mental image

A useful way of thinking about convolution is to

1. Rotate the filter 180 degrees.
2. Place it on top of the image in the image’s top left corner.
3. ”Slide” it across each column until you hit the right boundary of the image.
4. Start from the left again, but now, one row below the previous.
5. Repeat step 3. followed by 4. until you have covered the whole image.

Also, check out this nice interactive visualization:
http://setosa.io/ev/image-kernels/

21

http://setosa.io/ev/image-kernels/

different modes

We differentiate between three different modes when we filter one image with another:

Full: We get an output response at every point of overlap between the image
and the filter.

Same: The origin of the filter is always inside the image, and we pad the image in
order to preserve the image size in the result.

Valid: We only record a response as long as there is full overlap between the
image and the whole filter.

22

different modes

We differentiate between three different modes when we filter one image with another:

Full: We get an output response at every point of overlap between the image
and the filter.

Same: The origin of the filter is always inside the image, and we pad the image in
order to preserve the image size in the result.

Valid: We only record a response as long as there is full overlap between the
image and the whole filter.

22

different modes

We differentiate between three different modes when we filter one image with another:

Full: We get an output response at every point of overlap between the image
and the filter.

Same: The origin of the filter is always inside the image, and we pad the image in
order to preserve the image size in the result.

Valid: We only record a response as long as there is full overlap between the
image and the whole filter.

22

different modes

We differentiate between three different modes when we filter one image with another:

Full: We get an output response at every point of overlap between the image
and the filter.

Same: The origin of the filter is always inside the image, and we pad the image in
order to preserve the image size in the result.

Valid: We only record a response as long as there is full overlap between the
image and the whole filter.

22

full mode — example


1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

 full∗

 0.1 0.1 0.1

0.1 0.1 0.1

0.1 0.1 0.1

 =



0.1 0.3 0.6 0.9 0.7 0.4

0.6 1.4 2.4 3. 2.2 1.2

1.5 3.3 5.4 6.3 4.5 2.4

2.7 5.7 9. 9.9 6.9 3.6

2.2 4.6 7.2 7.8 5.4 2.8

1.3 2.7 4.2 4.5 3.1 1.6



23

valid mode — example


1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

 valid∗

 0.1 0.1 0.1

0.1 0.1 0.1

0.1 0.1 0.1

 =

[
5.4 6.3

9. 9.9

]

24

same mode — zero padding

Can also pad with other constant values than 0.


1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

 zero−→



0 0 0 0 0 0

0 1 2 3 4 0

0 5 6 7 8 0

0 9 10 11 12 0

0 13 14 15 16 0

0 0 0 0 0 0




1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

 same∗

 0.1 0.1 0.1

0.1 0.1 0.1

0.1 0.1 0.1

 =


1.4 2.4 3. 2.2

3.3 5.4 6.3 4.5

5.7 9. 9.9 6.9

4.6 7.2 7.8 5.4



25

separable filters

∙ A 2D filter w, is said to be separable if the filtration can be done with two sequential
1D filtrations, wV and wH .

∙ In other words, if w = wV ∗ wH

∙ An example is a 5× 5 mean filter

1

5


1

1

1

1

1

 ∗ 1

5

[
1 1 1 1 1

]
=

1

25


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1



26

separable filters

∙ A 2D filter w, is said to be separable if the filtration can be done with two sequential
1D filtrations, wV and wH .

∙ In other words, if w = wV ∗ wH

∙ An example is a 5× 5 mean filter

1

5


1

1

1

1

1

 ∗ 1

5

[
1 1 1 1 1

]
=

1

25


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1



26

separable filters

∙ A 2D filter w, is said to be separable if the filtration can be done with two sequential
1D filtrations, wV and wH .

∙ In other words, if w = wV ∗ wH

∙ An example is a 5× 5 mean filter

1

5


1

1

1

1

1

 ∗ 1

5

[
1 1 1 1 1

]
=

1

25


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1



26

separable filters are faster

∙ From the associativity of convolution, with f as an image and w = wV ∗ wH , we get

f ∗ w = f ∗ (wV ∗ wH) = (f ∗ wV) ∗ wH

∙ As can be seen, we can now do two convolutions with a 1D filter, in stead of one
convolution with a 2D filter, that is

g = f ∗ w, 2D
vs.

h = f ∗ wV 1D
g = h ∗ wH 1D

27

separable filters are faster

∙ From the associativity of convolution, with f as an image and w = wV ∗ wH , we get

f ∗ w = f ∗ (wV ∗ wH) = (f ∗ wV) ∗ wH

∙ As can be seen, we can now do two convolutions with a 1D filter, in stead of one
convolution with a 2D filter, that is

g = f ∗ w, 2D
vs.

h = f ∗ wV 1D
g = h ∗ wH 1D

27

how much faster? complexity

For an M ×N image and a square filter kernel with sidelengths L, a (naive) 2D
convolution implementation would have complexity of

O(MNL2),

while a (naive) 1D convolution implementation would have complexity of

O(MNL).

So the speed up should be linear in L.

28

how much faster? complexity

For an M ×N image and a square filter kernel with sidelengths L, a (naive) 2D
convolution implementation would have complexity of

O(MNL2),

while a (naive) 1D convolution implementation would have complexity of

O(MNL).

So the speed up should be linear in L.

28

how much faster? complexity

For an M ×N image and a square filter kernel with sidelengths L, a (naive) 2D
convolution implementation would have complexity of

O(MNL2),

while a (naive) 1D convolution implementation would have complexity of

O(MNL).

So the speed up should be linear in L.

28

some common filter categories

Low-pass filters
Lets through low frequencies, stops high frequencies. ”Blurs” the image.

High-pass filters
Lets through high frequencies, stops low frequencies. ”Sharpens” the
image.

Band-pass filters
Lets through frequencies in a certain range.

Feauture detection filters
Used for detection of features in an image. Features such as edges, corners
and texture.

29

some common filter categories

Low-pass filters
Lets through low frequencies, stops high frequencies. ”Blurs” the image.

High-pass filters
Lets through high frequencies, stops low frequencies. ”Sharpens” the
image.

Band-pass filters
Lets through frequencies in a certain range.

Feauture detection filters
Used for detection of features in an image. Features such as edges, corners
and texture.

29

some common filter categories

Low-pass filters
Lets through low frequencies, stops high frequencies. ”Blurs” the image.

High-pass filters
Lets through high frequencies, stops low frequencies. ”Sharpens” the
image.

Band-pass filters
Lets through frequencies in a certain range.

Feauture detection filters
Used for detection of features in an image. Features such as edges, corners
and texture.

29

some common filter categories

Low-pass filters
Lets through low frequencies, stops high frequencies. ”Blurs” the image.

High-pass filters
Lets through high frequencies, stops low frequencies. ”Sharpens” the
image.

Band-pass filters
Lets through frequencies in a certain range.

Feauture detection filters
Used for detection of features in an image. Features such as edges, corners
and texture.

29

low-pass filter — overview

∙ Lets through low frequencies (large trends and slow variations in an image).

∙ Stops or damps high frequencies (noise, details and sharp edges in an image).
∙ We will learn more about frequencies in the lectures about Fourier transforms.
∙ The resulting image is a ”smeared”, ”smoothed” or ”blurred” version of the original
image.

∙ Typical applications: Remove noise, locate larger objects in an image.
∙ Challenging to preserve edges.

30

low-pass filter — overview

∙ Lets through low frequencies (large trends and slow variations in an image).
∙ Stops or damps high frequencies (noise, details and sharp edges in an image).

∙ We will learn more about frequencies in the lectures about Fourier transforms.
∙ The resulting image is a ”smeared”, ”smoothed” or ”blurred” version of the original
image.

∙ Typical applications: Remove noise, locate larger objects in an image.
∙ Challenging to preserve edges.

30

low-pass filter — overview

∙ Lets through low frequencies (large trends and slow variations in an image).
∙ Stops or damps high frequencies (noise, details and sharp edges in an image).
∙ We will learn more about frequencies in the lectures about Fourier transforms.

∙ The resulting image is a ”smeared”, ”smoothed” or ”blurred” version of the original
image.

∙ Typical applications: Remove noise, locate larger objects in an image.
∙ Challenging to preserve edges.

30

low-pass filter — overview

∙ Lets through low frequencies (large trends and slow variations in an image).
∙ Stops or damps high frequencies (noise, details and sharp edges in an image).
∙ We will learn more about frequencies in the lectures about Fourier transforms.
∙ The resulting image is a ”smeared”, ”smoothed” or ”blurred” version of the original
image.

∙ Typical applications: Remove noise, locate larger objects in an image.
∙ Challenging to preserve edges.

30

low-pass filter — overview

∙ Lets through low frequencies (large trends and slow variations in an image).
∙ Stops or damps high frequencies (noise, details and sharp edges in an image).
∙ We will learn more about frequencies in the lectures about Fourier transforms.
∙ The resulting image is a ”smeared”, ”smoothed” or ”blurred” version of the original
image.

∙ Typical applications: Remove noise, locate larger objects in an image.

∙ Challenging to preserve edges.

30

low-pass filter — overview

∙ Lets through low frequencies (large trends and slow variations in an image).
∙ Stops or damps high frequencies (noise, details and sharp edges in an image).
∙ We will learn more about frequencies in the lectures about Fourier transforms.
∙ The resulting image is a ”smeared”, ”smoothed” or ”blurred” version of the original
image.

∙ Typical applications: Remove noise, locate larger objects in an image.
∙ Challenging to preserve edges.

30

mean value filter

∙ Computes the mean value in the neighbourhood.

∙ All weights (values in the filter) are equal.
∙ The sum of the weights is equal to 1.

∙ The neighbourhood size determines the ”blurring magnitude”.
∙ Large filter: Loss of details, more blurring.
∙ Small filter: Preservation of details, less blurring.

1

9

 1 1 1

1 1 1

1 1 1

 ,
1

25


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

 ,
1

49



1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1



31

mean value filter

∙ Computes the mean value in the neighbourhood.
∙ All weights (values in the filter) are equal.

∙ The sum of the weights is equal to 1.

∙ The neighbourhood size determines the ”blurring magnitude”.
∙ Large filter: Loss of details, more blurring.
∙ Small filter: Preservation of details, less blurring.

1

9

 1 1 1

1 1 1

1 1 1

 ,
1

25


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

 ,
1

49



1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1



31

mean value filter

∙ Computes the mean value in the neighbourhood.
∙ All weights (values in the filter) are equal.
∙ The sum of the weights is equal to 1.

∙ The neighbourhood size determines the ”blurring magnitude”.
∙ Large filter: Loss of details, more blurring.
∙ Small filter: Preservation of details, less blurring.

1

9

 1 1 1

1 1 1

1 1 1

 ,
1

25


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

 ,
1

49



1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1



31

mean value filter

∙ Computes the mean value in the neighbourhood.
∙ All weights (values in the filter) are equal.
∙ The sum of the weights is equal to 1.

∙ The neighbourhood size determines the ”blurring magnitude”.

∙ Large filter: Loss of details, more blurring.
∙ Small filter: Preservation of details, less blurring.

1

9

 1 1 1

1 1 1

1 1 1

 ,
1

25


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

 ,
1

49



1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1



31

mean value filter

∙ Computes the mean value in the neighbourhood.
∙ All weights (values in the filter) are equal.
∙ The sum of the weights is equal to 1.

∙ The neighbourhood size determines the ”blurring magnitude”.
∙ Large filter: Loss of details, more blurring.

∙ Small filter: Preservation of details, less blurring.

1

9

 1 1 1

1 1 1

1 1 1

 ,
1

25


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

 ,
1

49



1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1



31

mean value filter

∙ Computes the mean value in the neighbourhood.
∙ All weights (values in the filter) are equal.
∙ The sum of the weights is equal to 1.

∙ The neighbourhood size determines the ”blurring magnitude”.
∙ Large filter: Loss of details, more blurring.
∙ Small filter: Preservation of details, less blurring.

1

9

 1 1 1

1 1 1

1 1 1

 ,
1

25


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

 ,
1

49



1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1


31

mean value filter — example

(a) Original (b) 3 × 3

(c) 9 × 9 (d) 25 × 25

Figure 11: Gray level Mona Lisa image filtered with a mean value filter of different sizes.

32

gaussian filter

∙ For integer valus x, y, let

w[x, y] = A exp
{
−x2 + y2

2σ2

}
where A is usually such that

∑
x

∑
y w[x, y] = 1.

∙ This is a non-uniform low-pass filter.
∙ The parameter σ is the standard deviation and
controls the amount of smoothing.

∙ Small σ: Less smoothing
∙ Large σ: More smoothing

∙ A Gaussian filter smooths less than a uniform
filter of the same size.

(a) σ = 1

(b) σ = 2

Figure 12: Continuous bivariate Gaussian with different σ.
Implementation can be found at
https://ojskrede.github.io/inf2310/lectures/week_06/

33

https://ojskrede.github.io/inf2310/lectures/week_06/

gaussian filter

∙ For integer valus x, y, let

w[x, y] = A exp
{
−x2 + y2

2σ2

}
where A is usually such that

∑
x

∑
y w[x, y] = 1.

∙ This is a non-uniform low-pass filter.

∙ The parameter σ is the standard deviation and
controls the amount of smoothing.

∙ Small σ: Less smoothing
∙ Large σ: More smoothing

∙ A Gaussian filter smooths less than a uniform
filter of the same size.

(a) σ = 1

(b) σ = 2

Figure 12: Continuous bivariate Gaussian with different σ.
Implementation can be found at
https://ojskrede.github.io/inf2310/lectures/week_06/

33

https://ojskrede.github.io/inf2310/lectures/week_06/

gaussian filter

∙ For integer valus x, y, let

w[x, y] = A exp
{
−x2 + y2

2σ2

}
where A is usually such that

∑
x

∑
y w[x, y] = 1.

∙ This is a non-uniform low-pass filter.
∙ The parameter σ is the standard deviation and
controls the amount of smoothing.

∙ Small σ: Less smoothing
∙ Large σ: More smoothing

∙ A Gaussian filter smooths less than a uniform
filter of the same size.

(a) σ = 1

(b) σ = 2

Figure 12: Continuous bivariate Gaussian with different σ.
Implementation can be found at
https://ojskrede.github.io/inf2310/lectures/week_06/

33

https://ojskrede.github.io/inf2310/lectures/week_06/

gaussian filter

∙ For integer valus x, y, let

w[x, y] = A exp
{
−x2 + y2

2σ2

}
where A is usually such that

∑
x

∑
y w[x, y] = 1.

∙ This is a non-uniform low-pass filter.
∙ The parameter σ is the standard deviation and
controls the amount of smoothing.

∙ Small σ: Less smoothing
∙ Large σ: More smoothing

∙ A Gaussian filter smooths less than a uniform
filter of the same size.

(a) σ = 1

(b) σ = 2

Figure 12: Continuous bivariate Gaussian with different σ.
Implementation can be found at
https://ojskrede.github.io/inf2310/lectures/week_06/

33

https://ojskrede.github.io/inf2310/lectures/week_06/

median filtering

∙ A rank filter where we choose the middle value in the sorted list of values in the
neighbourhood of (x, y).

∙ One of the most frequently used edge-preserving filters.
∙ Especially well-suited for reducing impulse-noise (aka. ”salt-and-pepper-noise”).
∙ Not unusual with non-rectangular neighbourhood, e.g. plus-shaped
neighbourhoods.

∙ Some challenges:
∙ Thin lines can dissappear
∙ Corners can be rounded
∙ Objects can be shrinked

∙ The size and shape of the neighbourhood is important

34

median filtering

∙ A rank filter where we choose the middle value in the sorted list of values in the
neighbourhood of (x, y).

∙ One of the most frequently used edge-preserving filters.

∙ Especially well-suited for reducing impulse-noise (aka. ”salt-and-pepper-noise”).
∙ Not unusual with non-rectangular neighbourhood, e.g. plus-shaped
neighbourhoods.

∙ Some challenges:
∙ Thin lines can dissappear
∙ Corners can be rounded
∙ Objects can be shrinked

∙ The size and shape of the neighbourhood is important

34

median filtering

∙ A rank filter where we choose the middle value in the sorted list of values in the
neighbourhood of (x, y).

∙ One of the most frequently used edge-preserving filters.
∙ Especially well-suited for reducing impulse-noise (aka. ”salt-and-pepper-noise”).

∙ Not unusual with non-rectangular neighbourhood, e.g. plus-shaped
neighbourhoods.

∙ Some challenges:
∙ Thin lines can dissappear
∙ Corners can be rounded
∙ Objects can be shrinked

∙ The size and shape of the neighbourhood is important

34

median filtering

∙ A rank filter where we choose the middle value in the sorted list of values in the
neighbourhood of (x, y).

∙ One of the most frequently used edge-preserving filters.
∙ Especially well-suited for reducing impulse-noise (aka. ”salt-and-pepper-noise”).
∙ Not unusual with non-rectangular neighbourhood, e.g. plus-shaped
neighbourhoods.

∙ Some challenges:
∙ Thin lines can dissappear
∙ Corners can be rounded
∙ Objects can be shrinked

∙ The size and shape of the neighbourhood is important

34

median filtering

∙ A rank filter where we choose the middle value in the sorted list of values in the
neighbourhood of (x, y).

∙ One of the most frequently used edge-preserving filters.
∙ Especially well-suited for reducing impulse-noise (aka. ”salt-and-pepper-noise”).
∙ Not unusual with non-rectangular neighbourhood, e.g. plus-shaped
neighbourhoods.

∙ Some challenges:
∙ Thin lines can dissappear

∙ Corners can be rounded
∙ Objects can be shrinked

∙ The size and shape of the neighbourhood is important

34

median filtering

∙ A rank filter where we choose the middle value in the sorted list of values in the
neighbourhood of (x, y).

∙ One of the most frequently used edge-preserving filters.
∙ Especially well-suited for reducing impulse-noise (aka. ”salt-and-pepper-noise”).
∙ Not unusual with non-rectangular neighbourhood, e.g. plus-shaped
neighbourhoods.

∙ Some challenges:
∙ Thin lines can dissappear
∙ Corners can be rounded

∙ Objects can be shrinked

∙ The size and shape of the neighbourhood is important

34

median filtering

∙ A rank filter where we choose the middle value in the sorted list of values in the
neighbourhood of (x, y).

∙ One of the most frequently used edge-preserving filters.
∙ Especially well-suited for reducing impulse-noise (aka. ”salt-and-pepper-noise”).
∙ Not unusual with non-rectangular neighbourhood, e.g. plus-shaped
neighbourhoods.

∙ Some challenges:
∙ Thin lines can dissappear
∙ Corners can be rounded
∙ Objects can be shrinked

∙ The size and shape of the neighbourhood is important

34

median filtering

∙ A rank filter where we choose the middle value in the sorted list of values in the
neighbourhood of (x, y).

∙ One of the most frequently used edge-preserving filters.
∙ Especially well-suited for reducing impulse-noise (aka. ”salt-and-pepper-noise”).
∙ Not unusual with non-rectangular neighbourhood, e.g. plus-shaped
neighbourhoods.

∙ Some challenges:
∙ Thin lines can dissappear
∙ Corners can be rounded
∙ Objects can be shrinked

∙ The size and shape of the neighbourhood is important

34

high-pass filtering — overview

∙ Filters that let through high frequencies, and damps or block low frequencies.

∙ Effect:
∙ Damps slow variations, e.g. background
∙ Emphasizes sharp edges, lines, and details

∙ Is typically used to ”improve” the sharpness, and to detect edges.
∙ What happens with noise?
∙ Noise is amplified.

35

high-pass filtering — overview

∙ Filters that let through high frequencies, and damps or block low frequencies.
∙ Effect:

∙ Damps slow variations, e.g. background
∙ Emphasizes sharp edges, lines, and details

∙ Is typically used to ”improve” the sharpness, and to detect edges.
∙ What happens with noise?
∙ Noise is amplified.

35

high-pass filtering — overview

∙ Filters that let through high frequencies, and damps or block low frequencies.
∙ Effect:

∙ Damps slow variations, e.g. background
∙ Emphasizes sharp edges, lines, and details

∙ Is typically used to ”improve” the sharpness, and to detect edges.

∙ What happens with noise?
∙ Noise is amplified.

35

high-pass filtering — overview

∙ Filters that let through high frequencies, and damps or block low frequencies.
∙ Effect:

∙ Damps slow variations, e.g. background
∙ Emphasizes sharp edges, lines, and details

∙ Is typically used to ”improve” the sharpness, and to detect edges.
∙ What happens with noise?

∙ Noise is amplified.

35

high-pass filtering — overview

∙ Filters that let through high frequencies, and damps or block low frequencies.
∙ Effect:

∙ Damps slow variations, e.g. background
∙ Emphasizes sharp edges, lines, and details

∙ Is typically used to ”improve” the sharpness, and to detect edges.
∙ What happens with noise?
∙ Noise is amplified.

35

image improvement with high-pass filtering

∙ The convolution mask we have investigated can be rewritten as ”high-pass = k *
(original - low-pass)”, where k = 9 −1 −1 −1

−1 8 −1

−1 −1 −1

 = 9


 0 0 0

0 1 0

0 0 0

− 1

9

 1 1 1

1 1 1

1 1 1




∙ With this, our image improvement strategy can be viewed as:
1. Low pass filtering
2. Subtract the low-pass filtered image from the original
3. Add k times the difference from point 2. to the original image.

∙ The described method is called highboost-filtering.

36

image improvement with high-pass filtering

∙ The convolution mask we have investigated can be rewritten as ”high-pass = k *
(original - low-pass)”, where k = 9 −1 −1 −1

−1 8 −1

−1 −1 −1

 = 9


 0 0 0

0 1 0

0 0 0

− 1

9

 1 1 1

1 1 1

1 1 1




∙ With this, our image improvement strategy can be viewed as:
1. Low pass filtering
2. Subtract the low-pass filtered image from the original
3. Add k times the difference from point 2. to the original image.

∙ The described method is called highboost-filtering.

36

unsharp masking and highboost-filtering

Figure 13: Schematic illustration of image sharpening on a 1D ramp.

∙ Given an image.
∙ Blur the image with a low-pass filter.
∙ Compute the difference original − blurred

∙ sharpened = original + k(original − blurred)

∙ k is a positive constant.
∙ k = 1: Unsharp masking
∙ k > 1: Highboost-filtering

37

unsharp masking and highboost-filtering

Figure 13: Schematic illustration of image sharpening on a 1D ramp.

∙ Given an image.
∙ Blur the image with a low-pass filter.

∙ Compute the difference original − blurred

∙ sharpened = original + k(original − blurred)

∙ k is a positive constant.
∙ k = 1: Unsharp masking
∙ k > 1: Highboost-filtering

37

unsharp masking and highboost-filtering

Figure 13: Schematic illustration of image sharpening on a 1D ramp.

∙ Given an image.
∙ Blur the image with a low-pass filter.
∙ Compute the difference original − blurred

∙ sharpened = original + k(original − blurred)

∙ k is a positive constant.
∙ k = 1: Unsharp masking
∙ k > 1: Highboost-filtering

37

unsharp masking and highboost-filtering

Figure 13: Schematic illustration of image sharpening on a 1D ramp.

∙ Given an image.
∙ Blur the image with a low-pass filter.
∙ Compute the difference original − blurred

∙ sharpened = original + k(original − blurred)

∙ k is a positive constant.
∙ k = 1: Unsharp masking
∙ k > 1: Highboost-filtering

37

unsharp masking and highboost-filtering

Figure 13: Schematic illustration of image sharpening on a 1D ramp.

∙ Given an image.
∙ Blur the image with a low-pass filter.
∙ Compute the difference original − blurred

∙ sharpened = original + k(original − blurred)

∙ k is a positive constant.
∙ k = 1: Unsharp masking
∙ k > 1: Highboost-filtering

37

examples

38

examples

38

edge-detection — overview

∙ There exists much image information at the edges of objects in an image.

∙ Biological visual systems are based on edge-detection.
∙ Such systems often works in parallel and/or sequential:

∙ Local areas is treated independently
∙ Local results can be dependent on earlier results

39

edge-detection — overview

∙ There exists much image information at the edges of objects in an image.
∙ Biological visual systems are based on edge-detection.

∙ Such systems often works in parallel and/or sequential:
∙ Local areas is treated independently
∙ Local results can be dependent on earlier results

39

edge-detection — overview

∙ There exists much image information at the edges of objects in an image.
∙ Biological visual systems are based on edge-detection.
∙ Such systems often works in parallel and/or sequential:

∙ Local areas is treated independently
∙ Local results can be dependent on earlier results

39

summary — gradient angle and gradient magnitude

∙ The gradient points in the direction where the function ascends the most. We call
this the gradient angle

θg = arctan
(
gy
gx

)

∙ The ascent magnitude at this point is called the gradient magnitude and is

|∇f | = ∂f

∂r
(θg)

=
√

g2x + g2y.

∙ Where

gx =
∂f

∂x
, and gy =

∂f

∂y

are the components of the gradient of f , ∇f .

40

summary — gradient angle and gradient magnitude

∙ The gradient points in the direction where the function ascends the most. We call
this the gradient angle

θg = arctan
(
gy
gx

)
∙ The ascent magnitude at this point is called the gradient magnitude and is

|∇f | = ∂f

∂r
(θg)

=
√

g2x + g2y.

∙ Where

gx =
∂f

∂x
, and gy =

∂f

∂y

are the components of the gradient of f , ∇f .

40

digital gradient approximations

∙ We will approximate the gradient at some pixel (i, j) by the difference between
pixels in the neighbourhood.

∙ We can do this by using two convolution filters (hx, and hy) that approximates the
two components of the gradient operator.

∙ The convolution result gx[i, j] and gy[i, j] will then approximate the gradient at (i, j)
in the vertical and horizontal direction, respectively.

∙ In the next slides, we will introduce several different gradient operators. Note that
we write convolution filters, while G&W use correlation filters, and they are therefore
rotated 180 degrees compared to ours.

41

digital gradient approximations

∙ We will approximate the gradient at some pixel (i, j) by the difference between
pixels in the neighbourhood.

∙ We can do this by using two convolution filters (hx, and hy) that approximates the
two components of the gradient operator.

∙ The convolution result gx[i, j] and gy[i, j] will then approximate the gradient at (i, j)
in the vertical and horizontal direction, respectively.

∙ In the next slides, we will introduce several different gradient operators. Note that
we write convolution filters, while G&W use correlation filters, and they are therefore
rotated 180 degrees compared to ours.

41

digital gradient approximations

∙ We will approximate the gradient at some pixel (i, j) by the difference between
pixels in the neighbourhood.

∙ We can do this by using two convolution filters (hx, and hy) that approximates the
two components of the gradient operator.

∙ The convolution result gx[i, j] and gy[i, j] will then approximate the gradient at (i, j)
in the vertical and horizontal direction, respectively.

∙ In the next slides, we will introduce several different gradient operators. Note that
we write convolution filters, while G&W use correlation filters, and they are therefore
rotated 180 degrees compared to ours.

41

digital gradient approximations

∙ We will approximate the gradient at some pixel (i, j) by the difference between
pixels in the neighbourhood.

∙ We can do this by using two convolution filters (hx, and hy) that approximates the
two components of the gradient operator.

∙ The convolution result gx[i, j] and gy[i, j] will then approximate the gradient at (i, j)
in the vertical and horizontal direction, respectively.

∙ In the next slides, we will introduce several different gradient operators. Note that
we write convolution filters, while G&W use correlation filters, and they are therefore
rotated 180 degrees compared to ours.

41

increasing noise robustness: 2d gradient operators

∙ If we first apply a smoothing filter to reduce the noise.

∙ Then apply the desired gradient filter.
∙ We can utilize the separability of filters, and create new more noise-robust filters.

42

increasing noise robustness: 2d gradient operators

∙ If we first apply a smoothing filter to reduce the noise.
∙ Then apply the desired gradient filter.

∙ We can utilize the separability of filters, and create new more noise-robust filters.

42

increasing noise robustness: 2d gradient operators

∙ If we first apply a smoothing filter to reduce the noise.
∙ Then apply the desired gradient filter.
∙ We can utilize the separability of filters, and create new more noise-robust filters.

42

prewitt operator

hx =

 1

0

−1

 ∗
[
1 1 1

]
=

 1 1 1

0 0 0

−1 −1 −1

 ,

hy =
[
1 0 −1

]
∗

 1

1

1

 =

 1 0 −1

1 0 −1

1 0 −1

 .

43

prewitt operator

hx =

 1

0

−1

 ∗
[
1 1 1

]
=

 1 1 1

0 0 0

−1 −1 −1

 ,

hy =
[
1 0 −1

]
∗

 1

1

1

 =

 1 0 −1

1 0 −1

1 0 −1

 .

43

sobel operator

hx =

 1

0

−1

 ∗
[
1 2 1

]
=

 1 2 1

0 0 0

−1 −2 −1

 ,

hy =
[
1 0 −1

]
∗

 1

2

1

 =

 1 0 −1

2 0 −2

1 0 −1

 .

44

sobel operator

hx =

 1

0

−1

 ∗
[
1 2 1

]
=

 1 2 1

0 0 0

−1 −2 −1

 ,

hy =
[
1 0 −1

]
∗

 1

2

1

 =

 1 0 −1

2 0 −2

1 0 −1

 .

44

3x3 sobel gradient operators

(a) gx (b) gy

(c) |∇f| (d) θ

45

5x5 sobel gradient operators

(a) gx (b) gy

(c) |∇f| (d) θ

46

the laplace operator

∙ For a continuous bivariate function f ,
the Laplace operator is given by

∇2f =
∂2f

∂x2
+

∂2f

∂y2

∙ Function curvature information:
∙ It is positive for decreasing gradient,
∙ negative for increasing gradient,
∙ zero at critical points in the gradient.

∙ Has two extrema for each edge, which is
why we used it for image improvement
earlier.

∙ If we use the location of the zero
crossing, we can get a thin, well defined
location of the edge.

47

the laplace operator

∙ For a continuous bivariate function f ,
the Laplace operator is given by

∇2f =
∂2f

∂x2
+

∂2f

∂y2

∙ Function curvature information:
∙ It is positive for decreasing gradient,
∙ negative for increasing gradient,
∙ zero at critical points in the gradient.

∙ Has two extrema for each edge, which is
why we used it for image improvement
earlier.

∙ If we use the location of the zero
crossing, we can get a thin, well defined
location of the edge.

47

the laplace operator

∙ For a continuous bivariate function f ,
the Laplace operator is given by

∇2f =
∂2f

∂x2
+

∂2f

∂y2

∙ Function curvature information:
∙ It is positive for decreasing gradient,
∙ negative for increasing gradient,
∙ zero at critical points in the gradient.

∙ Has two extrema for each edge, which is
why we used it for image improvement
earlier.

∙ If we use the location of the zero
crossing, we can get a thin, well defined
location of the edge.

47

the laplace operator

∙ For a continuous bivariate function f ,
the Laplace operator is given by

∇2f =
∂2f

∂x2
+

∂2f

∂y2

∙ Function curvature information:
∙ It is positive for decreasing gradient,
∙ negative for increasing gradient,
∙ zero at critical points in the gradient.

∙ Has two extrema for each edge, which is
why we used it for image improvement
earlier.

∙ If we use the location of the zero
crossing, we can get a thin, well defined
location of the edge.

47

2d laplace operator

∙ Use the 1D Laplace approximation in both directions

−∇2f = −∂2f

∂x2
− ∂2f

∂y2

≈ −(f [x+ 1, y]− 2f [x, y] + f [x− 1, y])− (f [x, y + 1]− 2f [x, y] + f [x, y − 1])

= −f [x+ 1, y]− f [x, y + 1] + 4f [x, y] + f [x− 1, y] + f [x, y + 1]

∙ This can be computed by convolving the image with the following filter 0 −1 0

−1 4 −1

0 −1 0



48

2d laplace operator

∙ Use the 1D Laplace approximation in both directions

−∇2f = −∂2f

∂x2
− ∂2f

∂y2

≈ −(f [x+ 1, y]− 2f [x, y] + f [x− 1, y])− (f [x, y + 1]− 2f [x, y] + f [x, y − 1])

= −f [x+ 1, y]− f [x, y + 1] + 4f [x, y] + f [x− 1, y] + f [x, y + 1]

∙ This can be computed by convolving the image with the following filter 0 −1 0

−1 4 −1

0 −1 0



48

full 3x3 laplace operator

∙ If we, in addition, use the 1D Laplace approximation on the diagonal directions, we
get the following filter  −1 −1 −1

−1 8 −1

−1 −1 −1



∙ This convolution filter is the same as we used earlier in this slides for point
detection and image sharpness enhancement.

49

full 3x3 laplace operator

∙ If we, in addition, use the 1D Laplace approximation on the diagonal directions, we
get the following filter  −1 −1 −1

−1 8 −1

−1 −1 −1


∙ This convolution filter is the same as we used earlier in this slides for point
detection and image sharpness enhancement.

49

color imaging

the color of an object

∙ The color we percieve in an object is determined by the nature of the light reflected
by the object.

∙ Therefore, the color of an object is determined by
∙ The light hitting the object.
∙ How much light is reflected and absorbed.

∙ Or, in other words
∙ The spectral distribution of the incident light.
∙ The spectral distribution of the reflected light.

∙ The reflection properties are determined by
∙ Chemical pigments
∙ Physical surface structures

∙ Together, this determines what wavelengths are reflected, absorbed or transmitted.
∙ How we actually percieve color is complicated. Two complementary theories:
Trichromacy and Color opponency.

51

the color of an object

∙ The color we percieve in an object is determined by the nature of the light reflected
by the object.

∙ Therefore, the color of an object is determined by
∙ The light hitting the object.
∙ How much light is reflected and absorbed.

∙ Or, in other words
∙ The spectral distribution of the incident light.
∙ The spectral distribution of the reflected light.

∙ The reflection properties are determined by
∙ Chemical pigments
∙ Physical surface structures

∙ Together, this determines what wavelengths are reflected, absorbed or transmitted.
∙ How we actually percieve color is complicated. Two complementary theories:
Trichromacy and Color opponency.

51

the color of an object

∙ The color we percieve in an object is determined by the nature of the light reflected
by the object.

∙ Therefore, the color of an object is determined by
∙ The light hitting the object.
∙ How much light is reflected and absorbed.

∙ Or, in other words
∙ The spectral distribution of the incident light.
∙ The spectral distribution of the reflected light.

∙ The reflection properties are determined by
∙ Chemical pigments
∙ Physical surface structures

∙ Together, this determines what wavelengths are reflected, absorbed or transmitted.
∙ How we actually percieve color is complicated. Two complementary theories:
Trichromacy and Color opponency.

51

the color of an object

∙ The color we percieve in an object is determined by the nature of the light reflected
by the object.

∙ Therefore, the color of an object is determined by
∙ The light hitting the object.
∙ How much light is reflected and absorbed.

∙ Or, in other words
∙ The spectral distribution of the incident light.
∙ The spectral distribution of the reflected light.

∙ The reflection properties are determined by
∙ Chemical pigments
∙ Physical surface structures

∙ Together, this determines what wavelengths are reflected, absorbed or transmitted.
∙ How we actually percieve color is complicated. Two complementary theories:
Trichromacy and Color opponency.

51

the color of an object

∙ The color we percieve in an object is determined by the nature of the light reflected
by the object.

∙ Therefore, the color of an object is determined by
∙ The light hitting the object.
∙ How much light is reflected and absorbed.

∙ Or, in other words
∙ The spectral distribution of the incident light.
∙ The spectral distribution of the reflected light.

∙ The reflection properties are determined by
∙ Chemical pigments
∙ Physical surface structures

∙ Together, this determines what wavelengths are reflected, absorbed or transmitted.

∙ How we actually percieve color is complicated. Two complementary theories:
Trichromacy and Color opponency.

51

the color of an object

∙ The color we percieve in an object is determined by the nature of the light reflected
by the object.

∙ Therefore, the color of an object is determined by
∙ The light hitting the object.
∙ How much light is reflected and absorbed.

∙ Or, in other words
∙ The spectral distribution of the incident light.
∙ The spectral distribution of the reflected light.

∙ The reflection properties are determined by
∙ Chemical pigments
∙ Physical surface structures

∙ Together, this determines what wavelengths are reflected, absorbed or transmitted.
∙ How we actually percieve color is complicated. Two complementary theories:
Trichromacy and Color opponency.

51

some words and their meanings

All colors can be fully described by their
hue, saturation and some form of intensity,
or brightness value.

∙ Hue: The dominant wavelength of the
color.

∙ Saturation: How saturated the color is
with white light, from a pure color (no
white) to fully saturated (white).

∙ Intensity: How bright the color is, some
notion of darkness.

∙ Hue and saturation together
determines the color, and we call these
two chromaticity.

∙ The chromaticity determines both the
dominating wavelength and the
saturation of the color.

∙ Chromaticity and brightness together
fully describes a color.

∙ For instance, different graylevels have
the same chromaticity, but different
intensity.

Figure 17: Chromaticity modeled as a unit polar coordinate chart (ρ, θ) where fully
saturated colors are at the boundary (ρ = 1), and the angle θ represent the
wavelength, and thereby the hue.

52

some words and their meanings

All colors can be fully described by their
hue, saturation and some form of intensity,
or brightness value.

∙ Hue: The dominant wavelength of the
color.

∙ Saturation: How saturated the color is
with white light, from a pure color (no
white) to fully saturated (white).

∙ Intensity: How bright the color is, some
notion of darkness.

∙ Hue and saturation together
determines the color, and we call these
two chromaticity.

∙ The chromaticity determines both the
dominating wavelength and the
saturation of the color.

∙ Chromaticity and brightness together
fully describes a color.

∙ For instance, different graylevels have
the same chromaticity, but different
intensity.

Figure 17: Chromaticity modeled as a unit polar coordinate chart (ρ, θ) where fully
saturated colors are at the boundary (ρ = 1), and the angle θ represent the
wavelength, and thereby the hue.

52

some words and their meanings

All colors can be fully described by their
hue, saturation and some form of intensity,
or brightness value.

∙ Hue: The dominant wavelength of the
color.

∙ Saturation: How saturated the color is
with white light, from a pure color (no
white) to fully saturated (white).

∙ Intensity: How bright the color is, some
notion of darkness.

∙ Hue and saturation together
determines the color, and we call these
two chromaticity.

∙ The chromaticity determines both the
dominating wavelength and the
saturation of the color.

∙ Chromaticity and brightness together
fully describes a color.

∙ For instance, different graylevels have
the same chromaticity, but different
intensity.

Figure 17: Chromaticity modeled as a unit polar coordinate chart (ρ, θ) where fully
saturated colors are at the boundary (ρ = 1), and the angle θ represent the
wavelength, and thereby the hue.

52

some words and their meanings

All colors can be fully described by their
hue, saturation and some form of intensity,
or brightness value.

∙ Hue: The dominant wavelength of the
color.

∙ Saturation: How saturated the color is
with white light, from a pure color (no
white) to fully saturated (white).

∙ Intensity: How bright the color is, some
notion of darkness.

∙ Hue and saturation together
determines the color, and we call these
two chromaticity.

∙ The chromaticity determines both the
dominating wavelength and the
saturation of the color.

∙ Chromaticity and brightness together
fully describes a color.

∙ For instance, different graylevels have
the same chromaticity, but different
intensity.

Figure 17: Chromaticity modeled as a unit polar coordinate chart (ρ, θ) where fully
saturated colors are at the boundary (ρ = 1), and the angle θ represent the
wavelength, and thereby the hue.

52

some words and their meanings

All colors can be fully described by their
hue, saturation and some form of intensity,
or brightness value.

∙ Hue: The dominant wavelength of the
color.

∙ Saturation: How saturated the color is
with white light, from a pure color (no
white) to fully saturated (white).

∙ Intensity: How bright the color is, some
notion of darkness.

∙ Hue and saturation together
determines the color, and we call these
two chromaticity.

∙ The chromaticity determines both the
dominating wavelength and the
saturation of the color.

∙ Chromaticity and brightness together
fully describes a color.

∙ For instance, different graylevels have
the same chromaticity, but different
intensity.

Figure 17: Chromaticity modeled as a unit polar coordinate chart (ρ, θ) where fully
saturated colors are at the boundary (ρ = 1), and the angle θ represent the
wavelength, and thereby the hue.

52

some words and their meanings

All colors can be fully described by their
hue, saturation and some form of intensity,
or brightness value.

∙ Hue: The dominant wavelength of the
color.

∙ Saturation: How saturated the color is
with white light, from a pure color (no
white) to fully saturated (white).

∙ Intensity: How bright the color is, some
notion of darkness.

∙ Hue and saturation together
determines the color, and we call these
two chromaticity.

∙ The chromaticity determines both the
dominating wavelength and the
saturation of the color.

∙ Chromaticity and brightness together
fully describes a color.

∙ For instance, different graylevels have
the same chromaticity, but different
intensity.

Figure 17: Chromaticity modeled as a unit polar coordinate chart (ρ, θ) where fully
saturated colors are at the boundary (ρ = 1), and the angle θ represent the
wavelength, and thereby the hue.

52

some words and their meanings

All colors can be fully described by their
hue, saturation and some form of intensity,
or brightness value.

∙ Hue: The dominant wavelength of the
color.

∙ Saturation: How saturated the color is
with white light, from a pure color (no
white) to fully saturated (white).

∙ Intensity: How bright the color is, some
notion of darkness.

∙ Hue and saturation together
determines the color, and we call these
two chromaticity.

∙ The chromaticity determines both the
dominating wavelength and the
saturation of the color.

∙ Chromaticity and brightness together
fully describes a color.

∙ For instance, different graylevels have
the same chromaticity, but different
intensity.

Figure 17: Chromaticity modeled as a unit polar coordinate chart (ρ, θ) where fully
saturated colors are at the boundary (ρ = 1), and the angle θ represent the
wavelength, and thereby the hue.

52

additive color mixing

∙ Mixing light of two or more colors

∙ Additive primaries: Red, Green, Blue
∙ Additive secondaries: Yellow, Cyan,
Magenta

∙ Utilized in TV and Computer monitors
∙ Difference between a mix of red and
green (yellow) and yellow light
(wavelength at about 580 nm), but we
detect no difference. Figure 18: Additive mixing

53

additive color mixing

∙ Mixing light of two or more colors
∙ Additive primaries: Red, Green, Blue

∙ Additive secondaries: Yellow, Cyan,
Magenta

∙ Utilized in TV and Computer monitors
∙ Difference between a mix of red and
green (yellow) and yellow light
(wavelength at about 580 nm), but we
detect no difference. Figure 18: Additive mixing

53

additive color mixing

∙ Mixing light of two or more colors
∙ Additive primaries: Red, Green, Blue
∙ Additive secondaries: Yellow, Cyan,
Magenta

∙ Utilized in TV and Computer monitors
∙ Difference between a mix of red and
green (yellow) and yellow light
(wavelength at about 580 nm), but we
detect no difference. Figure 18: Additive mixing

53

additive color mixing

∙ Mixing light of two or more colors
∙ Additive primaries: Red, Green, Blue
∙ Additive secondaries: Yellow, Cyan,
Magenta

∙ Utilized in TV and Computer monitors

∙ Difference between a mix of red and
green (yellow) and yellow light
(wavelength at about 580 nm), but we
detect no difference. Figure 18: Additive mixing

53

additive color mixing

∙ Mixing light of two or more colors
∙ Additive primaries: Red, Green, Blue
∙ Additive secondaries: Yellow, Cyan,
Magenta

∙ Utilized in TV and Computer monitors
∙ Difference between a mix of red and
green (yellow) and yellow light
(wavelength at about 580 nm), but we
detect no difference. Figure 18: Additive mixing

53

subtractive color mixing

∙ Mixing filters or pigments that absorbs
and reflect different colors.

∙ If you begin with white light, the result
color you see is a result of a subtractive
color process where different
wavelengths have been absorbed.

∙ Subtractive primaries: Yellow, Cyan,
Magenta

∙ Subtractive secondaries: Red, Green,
Blue

∙ Mixing of paint is subtractive (although,
you probably used a RYB color model in
kindergarden).

Figure 19: Subtractive mixing

54

subtractive color mixing

∙ Mixing filters or pigments that absorbs
and reflect different colors.

∙ If you begin with white light, the result
color you see is a result of a subtractive
color process where different
wavelengths have been absorbed.

∙ Subtractive primaries: Yellow, Cyan,
Magenta

∙ Subtractive secondaries: Red, Green,
Blue

∙ Mixing of paint is subtractive (although,
you probably used a RYB color model in
kindergarden).

Figure 19: Subtractive mixing

54

subtractive color mixing

∙ Mixing filters or pigments that absorbs
and reflect different colors.

∙ If you begin with white light, the result
color you see is a result of a subtractive
color process where different
wavelengths have been absorbed.

∙ Subtractive primaries: Yellow, Cyan,
Magenta

∙ Subtractive secondaries: Red, Green,
Blue

∙ Mixing of paint is subtractive (although,
you probably used a RYB color model in
kindergarden).

Figure 19: Subtractive mixing

54

subtractive color mixing

∙ Mixing filters or pigments that absorbs
and reflect different colors.

∙ If you begin with white light, the result
color you see is a result of a subtractive
color process where different
wavelengths have been absorbed.

∙ Subtractive primaries: Yellow, Cyan,
Magenta

∙ Subtractive secondaries: Red, Green,
Blue

∙ Mixing of paint is subtractive (although,
you probably used a RYB color model in
kindergarden).

Figure 19: Subtractive mixing

54

subtractive color mixing

∙ Mixing filters or pigments that absorbs
and reflect different colors.

∙ If you begin with white light, the result
color you see is a result of a subtractive
color process where different
wavelengths have been absorbed.

∙ Subtractive primaries: Yellow, Cyan,
Magenta

∙ Subtractive secondaries: Red, Green,
Blue

∙ Mixing of paint is subtractive (although,
you probably used a RYB color model in
kindergarden).

Figure 19: Subtractive mixing

54

rgb color model

∙ An additive color model where the
primaries red, green and blue, are
added together to form a wide variety
of colors.

∙ Device dependent, meaning that the
color is dependent on the device that
detect or output the color.

∙ Typical input devices are video cameras,
digital cameras and image scanners.

∙ Typical output devices are TV, computer
and mobile displays.

∙ Organized in a unit cube with
coordinates (r, g, b), where (0, 0, 0) is
black and (1, 1, 1) is white.

∙ A typical 24 bit display has 256 values
for each channel.

(a) CRT monitor 1 (b) RGB color cube 2

1By Gona.eu - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6223756
2By SharkD - Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=3375025

55

rgb color model

∙ An additive color model where the
primaries red, green and blue, are
added together to form a wide variety
of colors.

∙ Device dependent, meaning that the
color is dependent on the device that
detect or output the color.

∙ Typical input devices are video cameras,
digital cameras and image scanners.

∙ Typical output devices are TV, computer
and mobile displays.

∙ Organized in a unit cube with
coordinates (r, g, b), where (0, 0, 0) is
black and (1, 1, 1) is white.

∙ A typical 24 bit display has 256 values
for each channel.

(a) CRT monitor 1 (b) RGB color cube 2

1By Gona.eu - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6223756
2By SharkD - Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=3375025

55

rgb color model

∙ An additive color model where the
primaries red, green and blue, are
added together to form a wide variety
of colors.

∙ Device dependent, meaning that the
color is dependent on the device that
detect or output the color.

∙ Typical input devices are video cameras,
digital cameras and image scanners.

∙ Typical output devices are TV, computer
and mobile displays.

∙ Organized in a unit cube with
coordinates (r, g, b), where (0, 0, 0) is
black and (1, 1, 1) is white.

∙ A typical 24 bit display has 256 values
for each channel.

(a) CRT monitor 1 (b) RGB color cube 2

1By Gona.eu - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6223756
2By SharkD - Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=3375025

55

rgb color model

∙ An additive color model where the
primaries red, green and blue, are
added together to form a wide variety
of colors.

∙ Device dependent, meaning that the
color is dependent on the device that
detect or output the color.

∙ Typical input devices are video cameras,
digital cameras and image scanners.

∙ Typical output devices are TV, computer
and mobile displays.

∙ Organized in a unit cube with
coordinates (r, g, b), where (0, 0, 0) is
black and (1, 1, 1) is white.

∙ A typical 24 bit display has 256 values
for each channel.

(a) CRT monitor 1 (b) RGB color cube 2

1By Gona.eu - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6223756
2By SharkD - Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=3375025

55

cmyk color model

∙ Cyan, Magenta, Yellow, Key (black)

∙ CMYK (in [0, 1]) to RGB (in [0, 1]):

R = (1− C)(1−K)

G = (1−M)(1−K)

B = (1− Y)(1−K)

∙ RGB (in [0, 1]) to CMYK (in [0, 1]):

K = 1− max{R,G,B}
C = (1−R−K)/(1−K)

M = (1−G−K)(1−K)

Y = (1−B −K)(1−K)

∙ The CMYK-model is subtractive
∙ RGB is common in display
monitors, CMYK is common in
printers.

Figure 21: 1 Collection of gamuts

1By BenRG and cmglee - http://commons.wikimedia.org/wiki/File:CIE1931xy_blank.svg, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=32158329 56

cmyk color model

∙ Cyan, Magenta, Yellow, Key (black)
∙ CMYK (in [0, 1]) to RGB (in [0, 1]):

R = (1− C)(1−K)

G = (1−M)(1−K)

B = (1− Y)(1−K)

∙ RGB (in [0, 1]) to CMYK (in [0, 1]):

K = 1− max{R,G,B}
C = (1−R−K)/(1−K)

M = (1−G−K)(1−K)

Y = (1−B −K)(1−K)

∙ The CMYK-model is subtractive
∙ RGB is common in display
monitors, CMYK is common in
printers.

Figure 21: 1 Collection of gamuts

1By BenRG and cmglee - http://commons.wikimedia.org/wiki/File:CIE1931xy_blank.svg, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=32158329 56

cmyk color model

∙ Cyan, Magenta, Yellow, Key (black)
∙ CMYK (in [0, 1]) to RGB (in [0, 1]):

R = (1− C)(1−K)

G = (1−M)(1−K)

B = (1− Y)(1−K)

∙ RGB (in [0, 1]) to CMYK (in [0, 1]):

K = 1− max{R,G,B}
C = (1−R−K)/(1−K)

M = (1−G−K)(1−K)

Y = (1−B −K)(1−K)

∙ The CMYK-model is subtractive

∙ RGB is common in display
monitors, CMYK is common in
printers.

Figure 21: 1 Collection of gamuts

1By BenRG and cmglee - http://commons.wikimedia.org/wiki/File:CIE1931xy_blank.svg, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=32158329 56

cmyk color model

∙ Cyan, Magenta, Yellow, Key (black)
∙ CMYK (in [0, 1]) to RGB (in [0, 1]):

R = (1− C)(1−K)

G = (1−M)(1−K)

B = (1− Y)(1−K)

∙ RGB (in [0, 1]) to CMYK (in [0, 1]):

K = 1− max{R,G,B}
C = (1−R−K)/(1−K)

M = (1−G−K)(1−K)

Y = (1−B −K)(1−K)

∙ The CMYK-model is subtractive
∙ RGB is common in display
monitors, CMYK is common in
printers.

Figure 21: 1 Collection of gamuts

1By BenRG and cmglee - http://commons.wikimedia.org/wiki/File:CIE1931xy_blank.svg, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=32158329 56

hue, saturation, intensity (hsi)

∙ Describe colors by their hue,
saturation and intensity.

∙ This can be veiwed in a double
cone (fig on the right).

∙ Hue: An angle from red (H =
0).

∙ Saturation: Distance from
center axis.

∙ Intensity: Vertical axis.

∙ RGB is useful for color
generation. HSI more useful
for color description and color
image processing. Figure 22: HSI double cone

57

hue, saturation, intensity (hsi)

∙ Describe colors by their hue,
saturation and intensity.

∙ This can be veiwed in a double
cone (fig on the right).

∙ Hue: An angle from red (H =
0).

∙ Saturation: Distance from
center axis.

∙ Intensity: Vertical axis.

∙ RGB is useful for color
generation. HSI more useful
for color description and color
image processing. Figure 22: HSI double cone

57

hue, saturation, intensity (hsi)

∙ Describe colors by their hue,
saturation and intensity.

∙ This can be veiwed in a double
cone (fig on the right).

∙ Hue: An angle from red (H =
0).

∙ Saturation: Distance from
center axis.

∙ Intensity: Vertical axis.

∙ RGB is useful for color
generation. HSI more useful
for color description and color
image processing. Figure 22: HSI double cone

57

organization of color images

True color uses all colors in the color space.

∙ Used in applications that contain many colors with subtle differences.
E.g. digital photography or photorealistic rendering.

∙ Two main ways to organize true color: Component ordering and packed
ordering.

Indexed color uses only a subset of colors.
∙ Application dependence on which subset to use.
∙ Reduces memory and computation cost.
∙ Used when subtle color differences is not vital.

58

organization of color images

True color uses all colors in the color space.
∙ Used in applications that contain many colors with subtle differences.
E.g. digital photography or photorealistic rendering.

∙ Two main ways to organize true color: Component ordering and packed
ordering.

Indexed color uses only a subset of colors.
∙ Application dependence on which subset to use.
∙ Reduces memory and computation cost.
∙ Used when subtle color differences is not vital.

58

organization of color images

True color uses all colors in the color space.
∙ Used in applications that contain many colors with subtle differences.
E.g. digital photography or photorealistic rendering.

∙ Two main ways to organize true color: Component ordering and packed
ordering.

Indexed color uses only a subset of colors.

∙ Application dependence on which subset to use.
∙ Reduces memory and computation cost.
∙ Used when subtle color differences is not vital.

58

organization of color images

True color uses all colors in the color space.
∙ Used in applications that contain many colors with subtle differences.
E.g. digital photography or photorealistic rendering.

∙ Two main ways to organize true color: Component ordering and packed
ordering.

Indexed color uses only a subset of colors.
∙ Application dependence on which subset to use.
∙ Reduces memory and computation cost.
∙ Used when subtle color differences is not vital.

58

example

59

red channel

60

green channel

61

blue channel

62

full example summary

(a) All (b) Red

(c) Green (d) Blue

63

indexed color

∙ An image contains indices of a look up table (LUT) of colors (palette) in stead of
color intensity values.

∙ Permits only a limited number of colors.
∙ Often are these images stored in indexed GIF or PNG formats.
∙ Use color quantization to transform optimally from a true color image to indexed
color image.

Figure 24: Indexed color ordering1 .

1Wilhelm Burger, Mark J. Burge, Principles of Digital Image Processing: Fundamental Techniques, 2010 64

indexed color

∙ An image contains indices of a look up table (LUT) of colors (palette) in stead of
color intensity values.

∙ Permits only a limited number of colors.

∙ Often are these images stored in indexed GIF or PNG formats.
∙ Use color quantization to transform optimally from a true color image to indexed
color image.

Figure 24: Indexed color ordering1 .

1Wilhelm Burger, Mark J. Burge, Principles of Digital Image Processing: Fundamental Techniques, 2010 64

indexed color

∙ An image contains indices of a look up table (LUT) of colors (palette) in stead of
color intensity values.

∙ Permits only a limited number of colors.
∙ Often are these images stored in indexed GIF or PNG formats.

∙ Use color quantization to transform optimally from a true color image to indexed
color image.

Figure 24: Indexed color ordering1 .

1Wilhelm Burger, Mark J. Burge, Principles of Digital Image Processing: Fundamental Techniques, 2010 64

indexed color

∙ An image contains indices of a look up table (LUT) of colors (palette) in stead of
color intensity values.

∙ Permits only a limited number of colors.
∙ Often are these images stored in indexed GIF or PNG formats.
∙ Use color quantization to transform optimally from a true color image to indexed
color image.

Figure 24: Indexed color ordering1 .

1Wilhelm Burger, Mark J. Burge, Principles of Digital Image Processing: Fundamental Techniques, 2010 64

color images and look up tables

∙ As we have seen, in true color, an RGB pixel can be stored in 24 bits (8 for each color).

∙ To reduce this size, we could e.g. assign 3 bits to each color.
∙ This would result in only 512 different possible colors, and a total of 9 bits ber pixel.
∙ A region with many nuances of a color would not loog good.
∙ It is certain that all 512 colors exist in the image.
∙ Alternatively, one could use 8 bits and a LUT.
∙ Each row in the table represent a 24 bit RGB color.
∙ The table consist of the 256 colors that best represent the image.

65

color images and look up tables

∙ As we have seen, in true color, an RGB pixel can be stored in 24 bits (8 for each color).
∙ To reduce this size, we could e.g. assign 3 bits to each color.

∙ This would result in only 512 different possible colors, and a total of 9 bits ber pixel.
∙ A region with many nuances of a color would not loog good.
∙ It is certain that all 512 colors exist in the image.
∙ Alternatively, one could use 8 bits and a LUT.
∙ Each row in the table represent a 24 bit RGB color.
∙ The table consist of the 256 colors that best represent the image.

65

color images and look up tables

∙ As we have seen, in true color, an RGB pixel can be stored in 24 bits (8 for each color).
∙ To reduce this size, we could e.g. assign 3 bits to each color.
∙ This would result in only 512 different possible colors, and a total of 9 bits ber pixel.

∙ A region with many nuances of a color would not loog good.
∙ It is certain that all 512 colors exist in the image.
∙ Alternatively, one could use 8 bits and a LUT.
∙ Each row in the table represent a 24 bit RGB color.
∙ The table consist of the 256 colors that best represent the image.

65

color images and look up tables

∙ As we have seen, in true color, an RGB pixel can be stored in 24 bits (8 for each color).
∙ To reduce this size, we could e.g. assign 3 bits to each color.
∙ This would result in only 512 different possible colors, and a total of 9 bits ber pixel.
∙ A region with many nuances of a color would not loog good.

∙ It is certain that all 512 colors exist in the image.
∙ Alternatively, one could use 8 bits and a LUT.
∙ Each row in the table represent a 24 bit RGB color.
∙ The table consist of the 256 colors that best represent the image.

65

color images and look up tables

∙ As we have seen, in true color, an RGB pixel can be stored in 24 bits (8 for each color).
∙ To reduce this size, we could e.g. assign 3 bits to each color.
∙ This would result in only 512 different possible colors, and a total of 9 bits ber pixel.
∙ A region with many nuances of a color would not loog good.
∙ It is certain that all 512 colors exist in the image.

∙ Alternatively, one could use 8 bits and a LUT.
∙ Each row in the table represent a 24 bit RGB color.
∙ The table consist of the 256 colors that best represent the image.

65

color images and look up tables

∙ As we have seen, in true color, an RGB pixel can be stored in 24 bits (8 for each color).
∙ To reduce this size, we could e.g. assign 3 bits to each color.
∙ This would result in only 512 different possible colors, and a total of 9 bits ber pixel.
∙ A region with many nuances of a color would not loog good.
∙ It is certain that all 512 colors exist in the image.
∙ Alternatively, one could use 8 bits and a LUT.

∙ Each row in the table represent a 24 bit RGB color.
∙ The table consist of the 256 colors that best represent the image.

65

color images and look up tables

∙ As we have seen, in true color, an RGB pixel can be stored in 24 bits (8 for each color).
∙ To reduce this size, we could e.g. assign 3 bits to each color.
∙ This would result in only 512 different possible colors, and a total of 9 bits ber pixel.
∙ A region with many nuances of a color would not loog good.
∙ It is certain that all 512 colors exist in the image.
∙ Alternatively, one could use 8 bits and a LUT.
∙ Each row in the table represent a 24 bit RGB color.

∙ The table consist of the 256 colors that best represent the image.

65

color images and look up tables

∙ As we have seen, in true color, an RGB pixel can be stored in 24 bits (8 for each color).
∙ To reduce this size, we could e.g. assign 3 bits to each color.
∙ This would result in only 512 different possible colors, and a total of 9 bits ber pixel.
∙ A region with many nuances of a color would not loog good.
∙ It is certain that all 512 colors exist in the image.
∙ Alternatively, one could use 8 bits and a LUT.
∙ Each row in the table represent a 24 bit RGB color.
∙ The table consist of the 256 colors that best represent the image.

65

pseudo colors

∙ Pseudo-color images can be graylevel images where each graylevel is assigned an
RGB value according to some LUT.

∙ Is often used to emphasize small graylevel differences (e.g. in medical imaging).
∙ Also often used in graphical display of data.
∙ If the color-LUT is mapped back to graylevels, the intensity should(!) be correct.
∙ Colormaps in plotting libraries are often pseudo-color LUT.

66

pseudo colors

∙ Pseudo-color images can be graylevel images where each graylevel is assigned an
RGB value according to some LUT.

∙ Is often used to emphasize small graylevel differences (e.g. in medical imaging).

∙ Also often used in graphical display of data.
∙ If the color-LUT is mapped back to graylevels, the intensity should(!) be correct.
∙ Colormaps in plotting libraries are often pseudo-color LUT.

66

pseudo colors

∙ Pseudo-color images can be graylevel images where each graylevel is assigned an
RGB value according to some LUT.

∙ Is often used to emphasize small graylevel differences (e.g. in medical imaging).
∙ Also often used in graphical display of data.

∙ If the color-LUT is mapped back to graylevels, the intensity should(!) be correct.
∙ Colormaps in plotting libraries are often pseudo-color LUT.

66

pseudo colors

∙ Pseudo-color images can be graylevel images where each graylevel is assigned an
RGB value according to some LUT.

∙ Is often used to emphasize small graylevel differences (e.g. in medical imaging).
∙ Also often used in graphical display of data.
∙ If the color-LUT is mapped back to graylevels, the intensity should(!) be correct.

∙ Colormaps in plotting libraries are often pseudo-color LUT.

66

pseudo colors

∙ Pseudo-color images can be graylevel images where each graylevel is assigned an
RGB value according to some LUT.

∙ Is often used to emphasize small graylevel differences (e.g. in medical imaging).
∙ Also often used in graphical display of data.
∙ If the color-LUT is mapped back to graylevels, the intensity should(!) be correct.
∙ Colormaps in plotting libraries are often pseudo-color LUT.

66

how to choose the correct colormap

∙ Often, we want the colormap to be perceptually uniform: Equal steps in the data are
percieved as equal steps in the color space.

∙ The human brain percieves changes in lightness as changes in data better than
changes in hue.

∙ Up until recently, Matlab (until 2014) and Python’s Matplotlib (until 2.0 release) used
jet as the default colormap for data display1.

∙ jet is a rainbow colormap that is not perceptually uniform.

Figure 25: A gradient of jet, and the lightness component of the CAM02-UCS colorspace.

1See a more detailed wrap-up here: https://bids.github.io/colormap/
67

https://bids.github.io/colormap/

how to choose the correct colormap

∙ Often, we want the colormap to be perceptually uniform: Equal steps in the data are
percieved as equal steps in the color space.

∙ The human brain percieves changes in lightness as changes in data better than
changes in hue.

∙ Up until recently, Matlab (until 2014) and Python’s Matplotlib (until 2.0 release) used
jet as the default colormap for data display1.

∙ jet is a rainbow colormap that is not perceptually uniform.

Figure 25: A gradient of jet, and the lightness component of the CAM02-UCS colorspace.

1See a more detailed wrap-up here: https://bids.github.io/colormap/
67

https://bids.github.io/colormap/

how to choose the correct colormap

∙ Often, we want the colormap to be perceptually uniform: Equal steps in the data are
percieved as equal steps in the color space.

∙ The human brain percieves changes in lightness as changes in data better than
changes in hue.

∙ Up until recently, Matlab (until 2014) and Python’s Matplotlib (until 2.0 release) used
jet as the default colormap for data display1.

∙ jet is a rainbow colormap that is not perceptually uniform.

Figure 25: A gradient of jet, and the lightness component of the CAM02-UCS colorspace.

1See a more detailed wrap-up here: https://bids.github.io/colormap/
67

https://bids.github.io/colormap/

how to choose the correct colormap

∙ Often, we want the colormap to be perceptually uniform: Equal steps in the data are
percieved as equal steps in the color space.

∙ The human brain percieves changes in lightness as changes in data better than
changes in hue.

∙ Up until recently, Matlab (until 2014) and Python’s Matplotlib (until 2.0 release) used
jet as the default colormap for data display1.

∙ jet is a rainbow colormap that is not perceptually uniform.

Figure 25: A gradient of jet, and the lightness component of the CAM02-UCS colorspace.

1See a more detailed wrap-up here: https://bids.github.io/colormap/
67

https://bids.github.io/colormap/

comparison of some colormaps

(a) gray (sequential) (b) magma (sequential perceptual uniform)

(c) coolwarm (diverging) (d) viridis (sequential perceptual uniform) (new matplotlib default)

68

comparison of some colormaps

(a) gray (sequential) (b) magma (sequential perceptual uniform)

(c) coolwarm (diverging) (d) viridis (sequential perceptual uniform) (new matplotlib default)

68

Questions?

69

	Optical systems
	Spatial filtering
	Color imaging

