
compression and coding i

Ole-Johan Skrede
26.04.2017

INF2310 - Digital Image Processing

Department of Informatics
The Faculty of Mathematics and Natural Sciences
University of Oslo

After original slides by Andreas Kleppe



today’s lecture

∙ Three steps of compression

∙ Redundancy
∙ Coding and entropy
∙ Shannon-Fano coding
∙ Huffman coding
∙ Arithmetic coding
∙ Sections from the compendium:

∙ 18.1 Hva er kompresjon
∙ 18.2 Kompresjonsprosessen
∙ 18.3 Melding, data, informasjon - og kapasitet
∙ 18.5 Litt om informasjonsteori og sannsynlighet
∙ 18.6 Naturlig binærkoding
∙ 18.7 Koding med variabel lengde

∙ 18.7.1 Shannon-Fano koding
∙ 18.7.2 Huffman koding
∙ 18.7.4 Aritmetisk koding

∙ Appendic B Prefiks i titallsystemet og i det binære systemet

1



today’s lecture

∙ Three steps of compression
∙ Redundancy

∙ Coding and entropy
∙ Shannon-Fano coding
∙ Huffman coding
∙ Arithmetic coding
∙ Sections from the compendium:

∙ 18.1 Hva er kompresjon
∙ 18.2 Kompresjonsprosessen
∙ 18.3 Melding, data, informasjon - og kapasitet
∙ 18.5 Litt om informasjonsteori og sannsynlighet
∙ 18.6 Naturlig binærkoding
∙ 18.7 Koding med variabel lengde

∙ 18.7.1 Shannon-Fano koding
∙ 18.7.2 Huffman koding
∙ 18.7.4 Aritmetisk koding

∙ Appendic B Prefiks i titallsystemet og i det binære systemet

1



today’s lecture

∙ Three steps of compression
∙ Redundancy
∙ Coding and entropy

∙ Shannon-Fano coding
∙ Huffman coding
∙ Arithmetic coding
∙ Sections from the compendium:

∙ 18.1 Hva er kompresjon
∙ 18.2 Kompresjonsprosessen
∙ 18.3 Melding, data, informasjon - og kapasitet
∙ 18.5 Litt om informasjonsteori og sannsynlighet
∙ 18.6 Naturlig binærkoding
∙ 18.7 Koding med variabel lengde

∙ 18.7.1 Shannon-Fano koding
∙ 18.7.2 Huffman koding
∙ 18.7.4 Aritmetisk koding

∙ Appendic B Prefiks i titallsystemet og i det binære systemet

1



today’s lecture

∙ Three steps of compression
∙ Redundancy
∙ Coding and entropy
∙ Shannon-Fano coding

∙ Huffman coding
∙ Arithmetic coding
∙ Sections from the compendium:

∙ 18.1 Hva er kompresjon
∙ 18.2 Kompresjonsprosessen
∙ 18.3 Melding, data, informasjon - og kapasitet
∙ 18.5 Litt om informasjonsteori og sannsynlighet
∙ 18.6 Naturlig binærkoding
∙ 18.7 Koding med variabel lengde

∙ 18.7.1 Shannon-Fano koding
∙ 18.7.2 Huffman koding
∙ 18.7.4 Aritmetisk koding

∙ Appendic B Prefiks i titallsystemet og i det binære systemet

1



today’s lecture

∙ Three steps of compression
∙ Redundancy
∙ Coding and entropy
∙ Shannon-Fano coding
∙ Huffman coding

∙ Arithmetic coding
∙ Sections from the compendium:

∙ 18.1 Hva er kompresjon
∙ 18.2 Kompresjonsprosessen
∙ 18.3 Melding, data, informasjon - og kapasitet
∙ 18.5 Litt om informasjonsteori og sannsynlighet
∙ 18.6 Naturlig binærkoding
∙ 18.7 Koding med variabel lengde

∙ 18.7.1 Shannon-Fano koding
∙ 18.7.2 Huffman koding
∙ 18.7.4 Aritmetisk koding

∙ Appendic B Prefiks i titallsystemet og i det binære systemet

1



today’s lecture

∙ Three steps of compression
∙ Redundancy
∙ Coding and entropy
∙ Shannon-Fano coding
∙ Huffman coding
∙ Arithmetic coding

∙ Sections from the compendium:
∙ 18.1 Hva er kompresjon
∙ 18.2 Kompresjonsprosessen
∙ 18.3 Melding, data, informasjon - og kapasitet
∙ 18.5 Litt om informasjonsteori og sannsynlighet
∙ 18.6 Naturlig binærkoding
∙ 18.7 Koding med variabel lengde

∙ 18.7.1 Shannon-Fano koding
∙ 18.7.2 Huffman koding
∙ 18.7.4 Aritmetisk koding

∙ Appendic B Prefiks i titallsystemet og i det binære systemet

1



today’s lecture

∙ Three steps of compression
∙ Redundancy
∙ Coding and entropy
∙ Shannon-Fano coding
∙ Huffman coding
∙ Arithmetic coding
∙ Sections from the compendium:

∙ 18.1 Hva er kompresjon
∙ 18.2 Kompresjonsprosessen
∙ 18.3 Melding, data, informasjon - og kapasitet
∙ 18.5 Litt om informasjonsteori og sannsynlighet
∙ 18.6 Naturlig binærkoding
∙ 18.7 Koding med variabel lengde

∙ 18.7.1 Shannon-Fano koding
∙ 18.7.2 Huffman koding
∙ 18.7.4 Aritmetisk koding

∙ Appendic B Prefiks i titallsystemet og i det binære systemet
1



motivation

∙ Compression is used to reduce the number of bits that is used to describe a signal
(or a good approximation of the signal).

∙ It has a number of applications in storage and transmission of data
∙ Video
∙ Remote analysis / metereology
∙ Surveillance / remote control
∙ Tele medicine / medical archives (PACS)
∙ Mobile communication
∙ MP3 music, DAB radio, digital camera etc.

∙ Time consumption is important, but compression time and decompression time can
vary.

∙ Asymmetric compression: when one is more important than the other.
∙ Symmetric compression: when both share the same importance.

2



motivation

∙ Compression is used to reduce the number of bits that is used to describe a signal
(or a good approximation of the signal).

∙ It has a number of applications in storage and transmission of data
∙ Video
∙ Remote analysis / metereology
∙ Surveillance / remote control
∙ Tele medicine / medical archives (PACS)
∙ Mobile communication
∙ MP3 music, DAB radio, digital camera etc.

∙ Time consumption is important, but compression time and decompression time can
vary.

∙ Asymmetric compression: when one is more important than the other.
∙ Symmetric compression: when both share the same importance.

2



motivation

∙ Compression is used to reduce the number of bits that is used to describe a signal
(or a good approximation of the signal).

∙ It has a number of applications in storage and transmission of data
∙ Video
∙ Remote analysis / metereology
∙ Surveillance / remote control
∙ Tele medicine / medical archives (PACS)
∙ Mobile communication
∙ MP3 music, DAB radio, digital camera etc.

∙ Time consumption is important, but compression time and decompression time can
vary.

∙ Asymmetric compression: when one is more important than the other.
∙ Symmetric compression: when both share the same importance.

2



introduction



si-units and prefixes

∙ We will use the symbol b to denote a bit and B to denote a byte (= 8b).

∙ Transfer speed and bandwidth capacity is always given with SI-prefixes

1 kbps 103bps 1 kilo bit per second
1 Mbps 106bps 1 mega bit per second
1 Gbps 109bps 1 giga bit per second
1 Tbps 1012bps 1 terra bit per second

∙ File size is always given with binary prefixes

1 KiB 210B 1 024 B 1 kibi byte
1 MiB 220B 1 048 576 B 1 mebi byte
1 GiB 230B 1 073 741 824 B 1 gibi byte
1 TiB 240B 1 099 511 627 776 B 1 tebi byte

4



si-units and prefixes

∙ We will use the symbol b to denote a bit and B to denote a byte (= 8b).
∙ Transfer speed and bandwidth capacity is always given with SI-prefixes

1 kbps 103bps 1 kilo bit per second
1 Mbps 106bps 1 mega bit per second
1 Gbps 109bps 1 giga bit per second
1 Tbps 1012bps 1 terra bit per second

∙ File size is always given with binary prefixes

1 KiB 210B 1 024 B 1 kibi byte
1 MiB 220B 1 048 576 B 1 mebi byte
1 GiB 230B 1 073 741 824 B 1 gibi byte
1 TiB 240B 1 099 511 627 776 B 1 tebi byte

4



space and time requirements

Capacity for some standards
∙ 3G: At least 200 kbps
∙ ADSL2+: Max 24 Mbps
∙ VDSL2: Max 100 Mbps

Example 1: Digital 8-bit RGB image: 8 bit× 512× 512× 3 6 291 456 bit
Example 2: X-ray image : 12 bit× 7112× 8636 737 030 784 bit

64 kbps capacity 1Mbps capacity

Example 1 ca 1 min. 38 s. ca 6 s.
Example 2 ca 3 h. 12 min. ca 12 min.

5



space and time requirements

Capacity for some standards
∙ 3G: At least 200 kbps
∙ ADSL2+: Max 24 Mbps
∙ VDSL2: Max 100 Mbps

Example 1: Digital 8-bit RGB image: 8 bit× 512× 512× 3 6 291 456 bit
Example 2: X-ray image : 12 bit× 7112× 8636 737 030 784 bit

64 kbps capacity 1Mbps capacity

Example 1 ca 1 min. 38 s. ca 6 s.
Example 2 ca 3 h. 12 min. ca 12 min.

5



compression and decompression

Figure 1: Compression and decompression pipeline

∙ We would like to compress our data, both to reduce storage and transmission load.
∙ In compression, we try to create a representation of the data which is smaller in size,
while preserving vital information. That is, we throw away redundant information.

∙ The original data (or an approximated version) can be retrieved through
decompression.

6



compression

Figure 2: Three steps of compression

We can group compression in to three steps:
∙ Transformation: A more compact image representation.

∙ Qunatization: Representation approximation.
∙ Coding: Transformation from one set of symbols to another.

∙ Encoding: Coding from an original format to some other format. E.g. encoding a digital
image from raw numbers to JPEG.

∙ Decoding: The reverse process, coding from some format to the original. E.g. decoding a
JPEG image back to raw numbers.

7



compression

Figure 2: Three steps of compression

We can group compression in to three steps:
∙ Transformation: A more compact image representation.
∙ Qunatization: Representation approximation.

∙ Coding: Transformation from one set of symbols to another.
∙ Encoding: Coding from an original format to some other format. E.g. encoding a digital
image from raw numbers to JPEG.

∙ Decoding: The reverse process, coding from some format to the original. E.g. decoding a
JPEG image back to raw numbers.

7



compression

Figure 2: Three steps of compression

We can group compression in to three steps:
∙ Transformation: A more compact image representation.
∙ Qunatization: Representation approximation.
∙ Coding: Transformation from one set of symbols to another.

∙ Encoding: Coding from an original format to some other format. E.g. encoding a digital
image from raw numbers to JPEG.

∙ Decoding: The reverse process, coding from some format to the original. E.g. decoding a
JPEG image back to raw numbers.

7



lossy and lossless compression

Compression can either be lossless or lossy. There exists a number of methods for both
types.

Lossless: We are able to perfectly reconstruct the original image.
Lossy: We can only reconstruct the original image to a certain degree (but not

perfect).

8



three steps of compression

∙ Many compression methods are based on applying an image transformation in order
to represent the image in a different way. Examples are the difference transform and
the run-length transform.

∙ If we quantize the original (or transformed) image, this cannot be reversed, which
implies a lossy compression.

∙ At the end, encoding is performed, which is some transformation to a binary
representation. This is often based on normalized histograms.

∙ Transforms are allways reversible.
∙ Quantizations are not reversible.
∙ Coding is always reversible.

9



three steps of compression

∙ Many compression methods are based on applying an image transformation in order
to represent the image in a different way. Examples are the difference transform and
the run-length transform.

∙ If we quantize the original (or transformed) image, this cannot be reversed, which
implies a lossy compression.

∙ At the end, encoding is performed, which is some transformation to a binary
representation. This is often based on normalized histograms.

∙ Transforms are allways reversible.
∙ Quantizations are not reversible.
∙ Coding is always reversible.

9



three steps of compression

∙ Many compression methods are based on applying an image transformation in order
to represent the image in a different way. Examples are the difference transform and
the run-length transform.

∙ If we quantize the original (or transformed) image, this cannot be reversed, which
implies a lossy compression.

∙ At the end, encoding is performed, which is some transformation to a binary
representation. This is often based on normalized histograms.

∙ Transforms are allways reversible.
∙ Quantizations are not reversible.
∙ Coding is always reversible.

9



signal, information and data

Signal: The signal that is to be stored or transmitted.
∙ A signal contains a certain amount of information.

Information: A mathematical construct that quantify the amount of ”surprise” in a
signal.

∙ An image with random pixel values contain more information than a
monotone image.

∙ Object edges has typically high information content.

Data: ∙ A bit-sequence representing the signal.

10



signal, information and data

Signal: The signal that is to be stored or transmitted.
∙ A signal contains a certain amount of information.

Information: A mathematical construct that quantify the amount of ”surprise” in a
signal.

∙ An image with random pixel values contain more information than a
monotone image.

∙ Object edges has typically high information content.

Data: ∙ A bit-sequence representing the signal.

10



signal, information and data

Signal: The signal that is to be stored or transmitted.
∙ A signal contains a certain amount of information.

Information: A mathematical construct that quantify the amount of ”surprise” in a
signal.

∙ An image with random pixel values contain more information than a
monotone image.

∙ Object edges has typically high information content.

Data: ∙ A bit-sequence representing the signal.

10



coding, nomenclature

∙ Symbol X : a unit component character.

∙ Alphabet X : the collection of all used symbols.
∙ Codeword y: a compressed, finite-length sequence of symbols. The compressed
signal is composed of codewords. We denote the range of y (collection of possible
codewords) as Y , that is, y ∈ Y .

∙ Source code (or code book) c: a mapping between a symbol x and its codeword
y = c(x).

c : X → Y
: x 7→ c(x)

11



coding, nomenclature

∙ Symbol X : a unit component character.
∙ Alphabet X : the collection of all used symbols.

∙ Codeword y: a compressed, finite-length sequence of symbols. The compressed
signal is composed of codewords. We denote the range of y (collection of possible
codewords) as Y , that is, y ∈ Y .

∙ Source code (or code book) c: a mapping between a symbol x and its codeword
y = c(x).

c : X → Y
: x 7→ c(x)

11



coding, nomenclature

∙ Symbol X : a unit component character.
∙ Alphabet X : the collection of all used symbols.
∙ Codeword y: a compressed, finite-length sequence of symbols. The compressed
signal is composed of codewords. We denote the range of y (collection of possible
codewords) as Y , that is, y ∈ Y .

∙ Source code (or code book) c: a mapping between a symbol x and its codeword
y = c(x).

c : X → Y
: x 7→ c(x)

11



coding, nomenclature

∙ Symbol X : a unit component character.
∙ Alphabet X : the collection of all used symbols.
∙ Codeword y: a compressed, finite-length sequence of symbols. The compressed
signal is composed of codewords. We denote the range of y (collection of possible
codewords) as Y , that is, y ∈ Y .

∙ Source code (or code book) c: a mapping between a symbol x and its codeword
y = c(x).

c : X → Y
: x 7→ c(x)

11



example, natural binary coding

Consider the source code defined by the following table

X : a b g d r z e t
Y : 000 001 010 011 100 101 110 111

such that c(d) = 011 etc. In this case

∙ The uncompressed symbols x are from the alphabet X .
∙ The compressed codewords y are composed of symbols from the alphabet
Sy = {0,1}.

∙ Each codeword is limited to 3 bits, and we can therefore only have 8 possible words
and codewords.

∙ If each word x has the same probability of occurance, this is optimally coded.

12



example, natural binary coding

Now, the symbols x can be whatever they like, so we include this example, which is the
same as the above one, except with a different input alphabeth.

X : alpha beta gamma delta rho zeta eta theta
Y : 000 001 010 011 100 101 110 111

such that c(delta) = 011 etc. In this case

∙ The uncompressed symbols x are from the alphabet X .
∙ The compressed codewords y are composed of symbols from the alphabet
Sy = {0,1}.

13



redundancy

∙ We can use a different amount of data on the same signal.

∙ E.g. the signal 13
∙ ISO 8859-1 (Latin-1): 16 bits: 8 bits for 1 (at 0x31) and 8 bits for 3 (at 0x33).
∙ 8-bit natural binary encoding: 8 bits: 00001101
∙ 4-bit natural binary encoding: 4 bits: 1101

∙ Redundancy: What can be removed from the data without loss of (relevant)
information.

∙ In compression, we want to remove redundant bits.

14



redundancy

∙ We can use a different amount of data on the same signal.
∙ E.g. the signal 13

∙ ISO 8859-1 (Latin-1): 16 bits: 8 bits for 1 (at 0x31) and 8 bits for 3 (at 0x33).
∙ 8-bit natural binary encoding: 8 bits: 00001101
∙ 4-bit natural binary encoding: 4 bits: 1101

∙ Redundancy: What can be removed from the data without loss of (relevant)
information.

∙ In compression, we want to remove redundant bits.

14



redundancy

∙ We can use a different amount of data on the same signal.
∙ E.g. the signal 13

∙ ISO 8859-1 (Latin-1): 16 bits: 8 bits for 1 (at 0x31) and 8 bits for 3 (at 0x33).
∙ 8-bit natural binary encoding: 8 bits: 00001101
∙ 4-bit natural binary encoding: 4 bits: 1101

∙ Redundancy: What can be removed from the data without loss of (relevant)
information.

∙ In compression, we want to remove redundant bits.

14



different types of redundancy

∙ Psychovisual redundancy
∙ Information that we cannot percieve.
∙ Can be compressed by e.g. subsampling or by reducing the number of bits per pixel.

∙ Inter-pixel temporal redundancy
∙ Correlation between successive images in a sequence.
∙ A sequence can be compressed by only storing some frames, and then only differences
for the rest of the sequence.

∙ Inter-pixel spatial redundancy
∙ Correlation between neighbouring pixels within an image.
∙ Can be compressed by e.g. run-length methods.

∙ Coding redundancy
∙ Information is not represented optimally by the symbols in the code.
∙ This is often measured as the difference between average code length and some
theoretical minimum code length.

15



different types of redundancy

∙ Psychovisual redundancy
∙ Information that we cannot percieve.
∙ Can be compressed by e.g. subsampling or by reducing the number of bits per pixel.

∙ Inter-pixel temporal redundancy
∙ Correlation between successive images in a sequence.
∙ A sequence can be compressed by only storing some frames, and then only differences
for the rest of the sequence.

∙ Inter-pixel spatial redundancy
∙ Correlation between neighbouring pixels within an image.
∙ Can be compressed by e.g. run-length methods.

∙ Coding redundancy
∙ Information is not represented optimally by the symbols in the code.
∙ This is often measured as the difference between average code length and some
theoretical minimum code length.

15



different types of redundancy

∙ Psychovisual redundancy
∙ Information that we cannot percieve.
∙ Can be compressed by e.g. subsampling or by reducing the number of bits per pixel.

∙ Inter-pixel temporal redundancy
∙ Correlation between successive images in a sequence.
∙ A sequence can be compressed by only storing some frames, and then only differences
for the rest of the sequence.

∙ Inter-pixel spatial redundancy
∙ Correlation between neighbouring pixels within an image.
∙ Can be compressed by e.g. run-length methods.

∙ Coding redundancy
∙ Information is not represented optimally by the symbols in the code.
∙ This is often measured as the difference between average code length and some
theoretical minimum code length.

15



different types of redundancy

∙ Psychovisual redundancy
∙ Information that we cannot percieve.
∙ Can be compressed by e.g. subsampling or by reducing the number of bits per pixel.

∙ Inter-pixel temporal redundancy
∙ Correlation between successive images in a sequence.
∙ A sequence can be compressed by only storing some frames, and then only differences
for the rest of the sequence.

∙ Inter-pixel spatial redundancy
∙ Correlation between neighbouring pixels within an image.
∙ Can be compressed by e.g. run-length methods.

∙ Coding redundancy
∙ Information is not represented optimally by the symbols in the code.
∙ This is often measured as the difference between average code length and some
theoretical minimum code length.

15



compression rate and redundancy

∙ The compression rate is defined as the ratio between the uncompressed size and
compressed size

Compression rate =
Uncompressed size
Compressed size

or as the ratio between the mean number of bits per symbol in the compressed and
uncompressed signal.

∙ Space saving is defined as the reduction in size relative to the uncompressed size,
and is given as

Space savings = 1− Compressed size
Unompressed size

∙ Example: An 8-bit 512× 512 image has an uncompressed size of 256 kiB, and a size of
64 kiB after compression.

∙ Compression rate: 4
∙ Space saving: 3/4

16



compression rate and redundancy

∙ The compression rate is defined as the ratio between the uncompressed size and
compressed size

Compression rate =
Uncompressed size
Compressed size

or as the ratio between the mean number of bits per symbol in the compressed and
uncompressed signal.

∙ Space saving is defined as the reduction in size relative to the uncompressed size,
and is given as

Space savings = 1− Compressed size
Unompressed size

∙ Example: An 8-bit 512× 512 image has an uncompressed size of 256 kiB, and a size of
64 kiB after compression.

∙ Compression rate: 4
∙ Space saving: 3/4

16



compression rate and redundancy

∙ The compression rate is defined as the ratio between the uncompressed size and
compressed size

Compression rate =
Uncompressed size
Compressed size

or as the ratio between the mean number of bits per symbol in the compressed and
uncompressed signal.

∙ Space saving is defined as the reduction in size relative to the uncompressed size,
and is given as

Space savings = 1− Compressed size
Unompressed size

∙ Example: An 8-bit 512× 512 image has an uncompressed size of 256 kiB, and a size of
64 kiB after compression.

∙ Compression rate: 4
∙ Space saving: 3/4

16



information theory and coding

∙ It is convenient to represent words as random variables X with an appropriate
probability mass function pX that describe the probability of occuring in a signal.

∙ With this we can construct a source code with
∙ shorter codewords (few symbols) to words with high probability, and
∙ longer coodewords to words with low probability.

∙ That is, we use a variable number of symbols to encode the words.

17



information theory and coding

∙ It is convenient to represent words as random variables X with an appropriate
probability mass function pX that describe the probability of occuring in a signal.

∙ With this we can construct a source code with
∙ shorter codewords (few symbols) to words with high probability, and
∙ longer coodewords to words with low probability.

∙ That is, we use a variable number of symbols to encode the words.

17



information theory and coding

∙ It is convenient to represent words as random variables X with an appropriate
probability mass function pX that describe the probability of occuring in a signal.

∙ With this we can construct a source code with
∙ shorter codewords (few symbols) to words with high probability, and
∙ longer coodewords to words with low probability.

∙ That is, we use a variable number of symbols to encode the words.

17



variable length coding example: morse code

Figure 3: Morse code

∙ The morse code alphabet consist of four
symbols: {a dot, a dash, a letter space, a word
space}.

∙ Codeword length is approximately inversly
proportional to the frequency of letters in the
english language.

Figure 4: Relative letter frequency in the english language 18



expected code length

∙ The expected length Lc of a source code c for a random variable X with pmf. pX is
defined as

Lc =
∑
x∈X

pX(x)lc(x)

where lc(x) is the length of the codeword assigned to x in this source code.

∙ Example: Let X be a random variable taking values in {1, 2, 3, 4} with probabilities
defined by pX below.

∙ Let us encode this with a variable length source code cv , and a source code ce with
equal length codewords.

pX(1) = 1
2 cv(1) = 0 ce(1) = 00

pX(2) = 1
4 cv(2) = 10 ce(2) = 01

pX(3) = 1
8 cv(3) = 110 ce(3) = 10

pX(4) = 1
8 cv(4) = 111 ce(4) = 11

∙ Expected length of the variable length coding: Lcv = 1.75 bits.
∙ Expected length of the equal length coding: Lce = 2 bits.

19



expected code length

∙ The expected length Lc of a source code c for a random variable X with pmf. pX is
defined as

Lc =
∑
x∈X

pX(x)lc(x)

where lc(x) is the length of the codeword assigned to x in this source code.
∙ Example: Let X be a random variable taking values in {1, 2, 3, 4} with probabilities
defined by pX below.

∙ Let us encode this with a variable length source code cv , and a source code ce with
equal length codewords.

pX(1) = 1
2 cv(1) = 0 ce(1) = 00

pX(2) = 1
4 cv(2) = 10 ce(2) = 01

pX(3) = 1
8 cv(3) = 110 ce(3) = 10

pX(4) = 1
8 cv(4) = 111 ce(4) = 11

∙ Expected length of the variable length coding: Lcv = 1.75 bits.
∙ Expected length of the equal length coding: Lce = 2 bits.

19



expected code length

∙ The expected length Lc of a source code c for a random variable X with pmf. pX is
defined as

Lc =
∑
x∈X

pX(x)lc(x)

where lc(x) is the length of the codeword assigned to x in this source code.
∙ Example: Let X be a random variable taking values in {1, 2, 3, 4} with probabilities
defined by pX below.

∙ Let us encode this with a variable length source code cv , and a source code ce with
equal length codewords.

pX(1) = 1
2 cv(1) = 0 ce(1) = 00

pX(2) = 1
4 cv(2) = 10 ce(2) = 01

pX(3) = 1
8 cv(3) = 110 ce(3) = 10

pX(4) = 1
8 cv(4) = 111 ce(4) = 11

∙ Expected length of the variable length coding: Lcv = 1.75 bits.
∙ Expected length of the equal length coding: Lce = 2 bits.

19



expected code length

∙ The expected length Lc of a source code c for a random variable X with pmf. pX is
defined as

Lc =
∑
x∈X

pX(x)lc(x)

where lc(x) is the length of the codeword assigned to x in this source code.
∙ Example: Let X be a random variable taking values in {1, 2, 3, 4} with probabilities
defined by pX below.

∙ Let us encode this with a variable length source code cv , and a source code ce with
equal length codewords.

pX(1) = 1
2 cv(1) = 0 ce(1) = 00

pX(2) = 1
4 cv(2) = 10 ce(2) = 01

pX(3) = 1
8 cv(3) = 110 ce(3) = 10

pX(4) = 1
8 cv(4) = 111 ce(4) = 11

∙ Expected length of the variable length coding: Lcv = 1.75 bits.

∙ Expected length of the equal length coding: Lce = 2 bits.

19



expected code length

∙ The expected length Lc of a source code c for a random variable X with pmf. pX is
defined as

Lc =
∑
x∈X

pX(x)lc(x)

where lc(x) is the length of the codeword assigned to x in this source code.
∙ Example: Let X be a random variable taking values in {1, 2, 3, 4} with probabilities
defined by pX below.

∙ Let us encode this with a variable length source code cv , and a source code ce with
equal length codewords.

pX(1) = 1
2 cv(1) = 0 ce(1) = 00

pX(2) = 1
4 cv(2) = 10 ce(2) = 01

pX(3) = 1
8 cv(3) = 110 ce(3) = 10

pX(4) = 1
8 cv(4) = 111 ce(4) = 11

∙ Expected length of the variable length coding: Lcv = 1.75 bits.
∙ Expected length of the equal length coding: Lce = 2 bits.

19



information content

∙ We use information content (aka self-information and surprisal) to measure the level
of information in an event X .

∙ The information content IX(x) (measured in bits) of an event x is defined as

IX(x) = log2
1

pX(x)
.

∙ It can also be measured in nats

IX(x) = loge
1

pX(x)
,

that is, with the natural logarithm, or in hartleys

IX(x) = log10
1

pX(x)
.

∙ We can change base of the logarithm from b to k with

logb(x) =
logk(x)
logk(b)

.

∙ If an event X takes value x with probability 1, the information content IX(x) = 0.

20



information content

∙ We use information content (aka self-information and surprisal) to measure the level
of information in an event X .

∙ The information content IX(x) (measured in bits) of an event x is defined as

IX(x) = log2
1

pX(x)
.

∙ It can also be measured in nats

IX(x) = loge
1

pX(x)
,

that is, with the natural logarithm, or in hartleys

IX(x) = log10
1

pX(x)
.

∙ We can change base of the logarithm from b to k with

logb(x) =
logk(x)
logk(b)

.

∙ If an event X takes value x with probability 1, the information content IX(x) = 0.

20



information content

∙ We use information content (aka self-information and surprisal) to measure the level
of information in an event X .

∙ The information content IX(x) (measured in bits) of an event x is defined as

IX(x) = log2
1

pX(x)
.

∙ It can also be measured in nats

IX(x) = loge
1

pX(x)
,

that is, with the natural logarithm, or in hartleys

IX(x) = log10
1

pX(x)
.

∙ We can change base of the logarithm from b to k with

logb(x) =
logk(x)
logk(b)

.

∙ If an event X takes value x with probability 1, the information content IX(x) = 0.

20



information content

∙ We use information content (aka self-information and surprisal) to measure the level
of information in an event X .

∙ The information content IX(x) (measured in bits) of an event x is defined as

IX(x) = log2
1

pX(x)
.

∙ It can also be measured in nats

IX(x) = loge
1

pX(x)
,

that is, with the natural logarithm, or in hartleys

IX(x) = log10
1

pX(x)
.

∙ We can change base of the logarithm from b to k with

logb(x) =
logk(x)
logk(b)

.

∙ If an event X takes value x with probability 1, the information content IX(x) = 0.
20



entropy

∙ The entropy of a random variable X taking values x ∈ X , and with pmf. pX , is
defined as

H(X) =
∑
x∈X

pX(x)IX(x)

= −
∑
x∈X

pX(x) log pX(x),

and is thus the expected information content in X , measured in bits (unless another
base for the logarithm is explicitly stated).

∙ We use the convention that x log(x) = 0 when x = 0.
∙ The entropy of a signal (a collection of events) gives a lower bound on how compact
the sequence can be encoded (if every event is encoded separately).

∙ The entropy of a fair coin toss is 1 bit (since −2 1
2 log2 1

2 = 1)
∙ The entropy of a fair dice toss is ≈2.6 bit (since −6 1

6 log2 1
6 ≈ 2.6)

21



entropy

∙ The entropy of a random variable X taking values x ∈ X , and with pmf. pX , is
defined as

H(X) =
∑
x∈X

pX(x)IX(x)

= −
∑
x∈X

pX(x) log pX(x),

and is thus the expected information content in X , measured in bits (unless another
base for the logarithm is explicitly stated).

∙ We use the convention that x log(x) = 0 when x = 0.

∙ The entropy of a signal (a collection of events) gives a lower bound on how compact
the sequence can be encoded (if every event is encoded separately).

∙ The entropy of a fair coin toss is 1 bit (since −2 1
2 log2 1

2 = 1)
∙ The entropy of a fair dice toss is ≈2.6 bit (since −6 1

6 log2 1
6 ≈ 2.6)

21



entropy

∙ The entropy of a random variable X taking values x ∈ X , and with pmf. pX , is
defined as

H(X) =
∑
x∈X

pX(x)IX(x)

= −
∑
x∈X

pX(x) log pX(x),

and is thus the expected information content in X , measured in bits (unless another
base for the logarithm is explicitly stated).

∙ We use the convention that x log(x) = 0 when x = 0.
∙ The entropy of a signal (a collection of events) gives a lower bound on how compact
the sequence can be encoded (if every event is encoded separately).

∙ The entropy of a fair coin toss is 1 bit (since −2 1
2 log2 1

2 = 1)
∙ The entropy of a fair dice toss is ≈2.6 bit (since −6 1

6 log2 1
6 ≈ 2.6)

21



entropy

∙ The entropy of a random variable X taking values x ∈ X , and with pmf. pX , is
defined as

H(X) =
∑
x∈X

pX(x)IX(x)

= −
∑
x∈X

pX(x) log pX(x),

and is thus the expected information content in X , measured in bits (unless another
base for the logarithm is explicitly stated).

∙ We use the convention that x log(x) = 0 when x = 0.
∙ The entropy of a signal (a collection of events) gives a lower bound on how compact
the sequence can be encoded (if every event is encoded separately).

∙ The entropy of a fair coin toss is 1 bit (since −2 1
2 log2 1

2 = 1)

∙ The entropy of a fair dice toss is ≈2.6 bit (since −6 1
6 log2 1

6 ≈ 2.6)

21



entropy

∙ The entropy of a random variable X taking values x ∈ X , and with pmf. pX , is
defined as

H(X) =
∑
x∈X

pX(x)IX(x)

= −
∑
x∈X

pX(x) log pX(x),

and is thus the expected information content in X , measured in bits (unless another
base for the logarithm is explicitly stated).

∙ We use the convention that x log(x) = 0 when x = 0.
∙ The entropy of a signal (a collection of events) gives a lower bound on how compact
the sequence can be encoded (if every event is encoded separately).

∙ The entropy of a fair coin toss is 1 bit (since −2 1
2 log2 1

2 = 1)
∙ The entropy of a fair dice toss is ≈2.6 bit (since −6 1

6 log2 1
6 ≈ 2.6)

21



entropy bounds

∙ Maximal entropy: every event has equal probability. For event that can take 2b

different values with equal probability (1/2b) the entropy is equal to the number of
bits in the alphabeth, H = b.

∙ Minimal entropy: only one event that occurs with probability 1. In this case the
entropy is zero, H = 0.

22



entropy bounds

∙ Maximal entropy: every event has equal probability. For event that can take 2b

different values with equal probability (1/2b) the entropy is equal to the number of
bits in the alphabeth, H = b.

∙ Minimal entropy: only one event that occurs with probability 1. In this case the
entropy is zero, H = 0.

22



estimating the probability mass function

∙ We can estimate the probability mass function with the normalized histogram.

∙ For a signal of length n with symbols taking values in the alphabeth {s0, . . . , sm−1},
let ni be the number of occurances of si in the signal, then the normalized
histogram value for symbol si is

pi =
ni

n
.

∙ If one assume that the values in the signal are independent realizations of an
underlying random variable, then pi is an estimate on the probability that the
variable is si.

23



estimating the probability mass function

∙ We can estimate the probability mass function with the normalized histogram.
∙ For a signal of length n with symbols taking values in the alphabeth {s0, . . . , sm−1},
let ni be the number of occurances of si in the signal, then the normalized
histogram value for symbol si is

pi =
ni

n
.

∙ If one assume that the values in the signal are independent realizations of an
underlying random variable, then pi is an estimate on the probability that the
variable is si.

23



estimating the probability mass function

∙ We can estimate the probability mass function with the normalized histogram.
∙ For a signal of length n with symbols taking values in the alphabeth {s0, . . . , sm−1},
let ni be the number of occurances of si in the signal, then the normalized
histogram value for symbol si is

pi =
ni

n
.

∙ If one assume that the values in the signal are independent realizations of an
underlying random variable, then pi is an estimate on the probability that the
variable is si.

23



entropy in a binary image

In this case, we have an M ×N image where each pixel is either 0 or 1. With no
inter-pixel spatial redundancy, we must use MN bits to store the image, but the entropy
is dependent on the distribution of values.

∙ As many 0 as 1 in the image: The information content is equal for each event, and
the entropy is therefore 1.

H = −1

2
log2

1

2
− 1

2
log2

1

2
= 1

∙ Three times as many 1 as 0 in the image: A value of 1 is less surprising than a value
of 0. The entropy is then less than in the case above.

H = −1

4
log2

1

4
− 3

4
log2

3

4
≈ 0.811

24



entropy in a binary image

In this case, we have an M ×N image where each pixel is either 0 or 1. With no
inter-pixel spatial redundancy, we must use MN bits to store the image, but the entropy
is dependent on the distribution of values.

∙ As many 0 as 1 in the image: The information content is equal for each event, and
the entropy is therefore 1.

H = −1

2
log2

1

2
− 1

2
log2

1

2
= 1

∙ Three times as many 1 as 0 in the image: A value of 1 is less surprising than a value
of 0. The entropy is then less than in the case above.

H = −1

4
log2

1

4
− 3

4
log2

3

4
≈ 0.811

24



entropy in a binary image

Figure 5: Entropy in a binary image

∙ When we store one by one pixel value, we need to use 1 bit per pixel, even if the
entropy is close to 0.

∙ The coding redundancy is 0 for the case where p0 = p1 = 0.5.

25



entropy in a binary image

Figure 5: Entropy in a binary image

∙ When we store one by one pixel value, we need to use 1 bit per pixel, even if the
entropy is close to 0.

∙ The coding redundancy is 0 for the case where p0 = p1 = 0.5.

25



classes of codes

We can separate all codes into the following subsets1

∙ Nonsingular codes
∙ Uniquely decodable codes
∙ Instantaneous (or prefix) codes

Figure 6: Code classes

1See e.g. Elements of Information Theory by T. M. Cover and J. A. Thomas for more
26



nonsingular codes

∙ A code is said to be nonsingular if every element in X has a unique codeword y ∈ Y .

∙ That is, the source code c is nonsingular if, for every x, x′ ∈ X

x ̸= x′ =⇒ c(x) ̸= c(x′).

27



nonsingular codes

∙ A code is said to be nonsingular if every element in X has a unique codeword y ∈ Y .
∙ That is, the source code c is nonsingular if, for every x, x′ ∈ X

x ̸= x′ =⇒ c(x) ̸= c(x′).

27



uniquely decodable codes

∙ We define the extension of a code c as the concatenation of codewords

c(x1x2 · · ·xn) = c(x1)c(x2) · · · c(xn)

∙ Example: if c(x1) = ab and c(x2) = cd, then c(x1x2) = abcd.
∙ A code is said to be uniquely decodable if its extension is nonsingular.
∙ With this, every encoded string of symbols has one and only one sequence of source
symbols.

∙ We may need to look at the entire encoded string to determine its individual
codewords, and decode it.

28



uniquely decodable codes

∙ We define the extension of a code c as the concatenation of codewords

c(x1x2 · · ·xn) = c(x1)c(x2) · · · c(xn)

∙ Example: if c(x1) = ab and c(x2) = cd, then c(x1x2) = abcd.

∙ A code is said to be uniquely decodable if its extension is nonsingular.
∙ With this, every encoded string of symbols has one and only one sequence of source
symbols.

∙ We may need to look at the entire encoded string to determine its individual
codewords, and decode it.

28



uniquely decodable codes

∙ We define the extension of a code c as the concatenation of codewords

c(x1x2 · · ·xn) = c(x1)c(x2) · · · c(xn)

∙ Example: if c(x1) = ab and c(x2) = cd, then c(x1x2) = abcd.
∙ A code is said to be uniquely decodable if its extension is nonsingular.

∙ With this, every encoded string of symbols has one and only one sequence of source
symbols.

∙ We may need to look at the entire encoded string to determine its individual
codewords, and decode it.

28



uniquely decodable codes

∙ We define the extension of a code c as the concatenation of codewords

c(x1x2 · · ·xn) = c(x1)c(x2) · · · c(xn)

∙ Example: if c(x1) = ab and c(x2) = cd, then c(x1x2) = abcd.
∙ A code is said to be uniquely decodable if its extension is nonsingular.
∙ With this, every encoded string of symbols has one and only one sequence of source
symbols.

∙ We may need to look at the entire encoded string to determine its individual
codewords, and decode it.

28



uniquely decodable codes

∙ We define the extension of a code c as the concatenation of codewords

c(x1x2 · · ·xn) = c(x1)c(x2) · · · c(xn)

∙ Example: if c(x1) = ab and c(x2) = cd, then c(x1x2) = abcd.
∙ A code is said to be uniquely decodable if its extension is nonsingular.
∙ With this, every encoded string of symbols has one and only one sequence of source
symbols.

∙ We may need to look at the entire encoded string to determine its individual
codewords, and decode it.

28



instantaneous code

∙ A code is said to be instantaneous or a prefix code if no codeword is a prefix of
another codeword.

∙ For this class of codes, it suffices to read a codeword in order to decode it.
∙ That is, we do not need to process the entire string of codewords in order to decode
it.

29



instantaneous code

∙ A code is said to be instantaneous or a prefix code if no codeword is a prefix of
another codeword.

∙ For this class of codes, it suffices to read a codeword in order to decode it.

∙ That is, we do not need to process the entire string of codewords in order to decode
it.

29



instantaneous code

∙ A code is said to be instantaneous or a prefix code if no codeword is a prefix of
another codeword.

∙ For this class of codes, it suffices to read a codeword in order to decode it.
∙ That is, we do not need to process the entire string of codewords in order to decode
it.

29



code set examples

Nonsingular, but not Uniquely decodable,
X Singular uniquely decodable but not intantaneous Instantaneous

a 0 0 10 0
b 0 010 00 10
c 0 01 11 110
d 0 10 110 111

∙ The code in column three is nonsingular, but we need a seperator between the
codewords to be able to decode it. E.g. 00100110 can be decoded to

∙ abcd when separated as 0, 010, 01, 10,
∙ aadcd when separated as 0, 0, 10, 01, 10.

∙ In column four, the codeword for c is a prefix for the codeword associated with d, and
therefore, the code is not instantaneous. We need to look at the whole string of
codewords to decode it.

∙ The code in column five is instantaneous, and we can immediately decode a string of
codewords.

30



code set examples

Nonsingular, but not Uniquely decodable,
X Singular uniquely decodable but not intantaneous Instantaneous

a 0 0 10 0
b 0 010 00 10
c 0 01 11 110
d 0 10 110 111

∙ The code in column three is nonsingular, but we need a seperator between the
codewords to be able to decode it. E.g. 00100110 can be decoded to

∙ abcd when separated as 0, 010, 01, 10,
∙ aadcd when separated as 0, 0, 10, 01, 10.

∙ In column four, the codeword for c is a prefix for the codeword associated with d, and
therefore, the code is not instantaneous. We need to look at the whole string of
codewords to decode it.

∙ The code in column five is instantaneous, and we can immediately decode a string of
codewords.

30



code set examples

Nonsingular, but not Uniquely decodable,
X Singular uniquely decodable but not intantaneous Instantaneous

a 0 0 10 0
b 0 010 00 10
c 0 01 11 110
d 0 10 110 111

∙ The code in column three is nonsingular, but we need a seperator between the
codewords to be able to decode it. E.g. 00100110 can be decoded to

∙ abcd when separated as 0, 010, 01, 10,
∙ aadcd when separated as 0, 0, 10, 01, 10.

∙ In column four, the codeword for c is a prefix for the codeword associated with d, and
therefore, the code is not instantaneous. We need to look at the whole string of
codewords to decode it.

∙ The code in column five is instantaneous, and we can immediately decode a string of
codewords. 30



optimal code lengths

∙ For an alphabeth with n different
symbols, the codeword lengths
l1, . . . , lm from any instantaneous
code must satisfy

m∑
i=1

n−li ≤ 1.

∙ If there exists a set of codelengths
that satisfy this inequality, there
exist an instantaneous code with
these word lengths.

∙ This result is called the Kraft
inequality theorem.

∙ The expected length of any instantaneous
code over an alphabeth with n symbols for a
random variable X is greater or equal to the
entropy H(X). That is

m∑
i=1

lipi ≥ H(X)

with equality if and only if n−li = pi. Here, pi
is the value of the probability mass function
at xi: pi = Pr(X = xi).

∙ An instantaneous code that achieves
equality is thus optimal in terms of
expected codeword lengths (something that
we want to minimize).

31



optimal code lengths

∙ For an alphabeth with n different
symbols, the codeword lengths
l1, . . . , lm from any instantaneous
code must satisfy

m∑
i=1

n−li ≤ 1.

∙ If there exists a set of codelengths
that satisfy this inequality, there
exist an instantaneous code with
these word lengths.

∙ This result is called the Kraft
inequality theorem.

∙ The expected length of any instantaneous
code over an alphabeth with n symbols for a
random variable X is greater or equal to the
entropy H(X). That is

m∑
i=1

lipi ≥ H(X)

with equality if and only if n−li = pi. Here, pi
is the value of the probability mass function
at xi: pi = Pr(X = xi).

∙ An instantaneous code that achieves
equality is thus optimal in terms of
expected codeword lengths (something that
we want to minimize).

31



optimal code lengths

∙ For an alphabeth with n different
symbols, the codeword lengths
l1, . . . , lm from any instantaneous
code must satisfy

m∑
i=1

n−li ≤ 1.

∙ If there exists a set of codelengths
that satisfy this inequality, there
exist an instantaneous code with
these word lengths.

∙ This result is called the Kraft
inequality theorem.

∙ The expected length of any instantaneous
code over an alphabeth with n symbols for a
random variable X is greater or equal to the
entropy H(X). That is

m∑
i=1

lipi ≥ H(X)

with equality if and only if n−li = pi. Here, pi
is the value of the probability mass function
at xi: pi = Pr(X = xi).

∙ An instantaneous code that achieves
equality is thus optimal in terms of
expected codeword lengths (something that
we want to minimize).

31



optimal code lengths

∙ For an alphabeth with n different
symbols, the codeword lengths
l1, . . . , lm from any instantaneous
code must satisfy

m∑
i=1

n−li ≤ 1.

∙ If there exists a set of codelengths
that satisfy this inequality, there
exist an instantaneous code with
these word lengths.

∙ This result is called the Kraft
inequality theorem.

∙ The expected length of any instantaneous
code over an alphabeth with n symbols for a
random variable X is greater or equal to the
entropy H(X). That is

m∑
i=1

lipi ≥ H(X)

with equality if and only if n−li = pi. Here, pi
is the value of the probability mass function
at xi: pi = Pr(X = xi).

∙ An instantaneous code that achieves
equality is thus optimal in terms of
expected codeword lengths (something that
we want to minimize).

31



optimal code lengths

∙ For an alphabeth with n different
symbols, the codeword lengths
l1, . . . , lm from any instantaneous
code must satisfy

m∑
i=1

n−li ≤ 1.

∙ If there exists a set of codelengths
that satisfy this inequality, there
exist an instantaneous code with
these word lengths.

∙ This result is called the Kraft
inequality theorem.

∙ The expected length of any instantaneous
code over an alphabeth with n symbols for a
random variable X is greater or equal to the
entropy H(X). That is

m∑
i=1

lipi ≥ H(X)

with equality if and only if n−li = pi. Here, pi
is the value of the probability mass function
at xi: pi = Pr(X = xi).

∙ An instantaneous code that achieves
equality is thus optimal in terms of
expected codeword lengths (something that
we want to minimize).

31



shannon-fano coding

∙ A simple method that produces an instantaneous code.

∙ The resulting is quite compact (but not optimal).
∙ Algorithm that produces a binary Shannon-Fano code (with alphabeth {0, 1}):

1. Sort the symbols xi of the signal that we want to code by probability of occurance.
2. Split the symbols into two parts with approximately equal accumulated probability.

∙ One group is assigned the symbol 0, and the other the symbol 1.
∙ Do this step recursively (that is, do this step on every subgroup), until the group only contain
one element.

3. The result is a binary tree with the symbols that are to be encoded in the leaf nodes.
4. Traverse the tree from root to the leaf nodes and record the sequence of symbols in

order to produce the corresponding codeword.

32



shannon-fano coding

∙ A simple method that produces an instantaneous code.
∙ The resulting is quite compact (but not optimal).

∙ Algorithm that produces a binary Shannon-Fano code (with alphabeth {0, 1}):
1. Sort the symbols xi of the signal that we want to code by probability of occurance.
2. Split the symbols into two parts with approximately equal accumulated probability.

∙ One group is assigned the symbol 0, and the other the symbol 1.
∙ Do this step recursively (that is, do this step on every subgroup), until the group only contain
one element.

3. The result is a binary tree with the symbols that are to be encoded in the leaf nodes.
4. Traverse the tree from root to the leaf nodes and record the sequence of symbols in

order to produce the corresponding codeword.

32



shannon-fano coding

∙ A simple method that produces an instantaneous code.
∙ The resulting is quite compact (but not optimal).
∙ Algorithm that produces a binary Shannon-Fano code (with alphabeth {0, 1}):

1. Sort the symbols xi of the signal that we want to code by probability of occurance.
2. Split the symbols into two parts with approximately equal accumulated probability.

∙ One group is assigned the symbol 0, and the other the symbol 1.
∙ Do this step recursively (that is, do this step on every subgroup), until the group only contain
one element.

3. The result is a binary tree with the symbols that are to be encoded in the leaf nodes.
4. Traverse the tree from root to the leaf nodes and record the sequence of symbols in

order to produce the corresponding codeword.

32



shannon-fano example

Two different encodings of the sequence ”HALLO”.

x pX(x) c(x) l(x)

L 2/5 0 1
H 1/5 10 2
A 1/5 110 3
O 1/5 111 3

c(HALLO) = 1011000111, with length 10 bits.

x pX(x) c(x) l(x)

L 2/5 00 2
H 1/5 01 2
A 1/5 10 2
O 1/5 11 2

c(HALLO) = 0110000011, with length 10 bits.

33



shannon-fano example

Two different encodings of the sequence ”HALLO”.

x pX(x) c(x) l(x)

L 2/5 0 1
H 1/5 10 2
A 1/5 110 3
O 1/5 111 3

c(HALLO) = 1011000111, with length 10 bits.

x pX(x) c(x) l(x)

L 2/5 00 2
H 1/5 01 2
A 1/5 10 2
O 1/5 11 2

c(HALLO) = 0110000011, with length 10 bits.
33



shannon-fano coding

∙ As we saw from the previous examples, the final code is dependent on how we split
the groups.

∙ In this case, the two solutions are equally good, but this is not allways the case.
∙ In general, the expected codeword length L is bounded as

H(X) ≤ L ≤ H(X) + 1.

That is, an upper bound for the coding redundancy of one bit.
∙ The expected codeword length is 2 in both example 1 and 2, and the entropy is about
1.92 bits.

34



shannon-fano coding

∙ As we saw from the previous examples, the final code is dependent on how we split
the groups.

∙ In this case, the two solutions are equally good, but this is not allways the case.

∙ In general, the expected codeword length L is bounded as

H(X) ≤ L ≤ H(X) + 1.

That is, an upper bound for the coding redundancy of one bit.
∙ The expected codeword length is 2 in both example 1 and 2, and the entropy is about
1.92 bits.

34



shannon-fano coding

∙ As we saw from the previous examples, the final code is dependent on how we split
the groups.

∙ In this case, the two solutions are equally good, but this is not allways the case.
∙ In general, the expected codeword length L is bounded as

H(X) ≤ L ≤ H(X) + 1.

That is, an upper bound for the coding redundancy of one bit.

∙ The expected codeword length is 2 in both example 1 and 2, and the entropy is about
1.92 bits.

34



shannon-fano coding

∙ As we saw from the previous examples, the final code is dependent on how we split
the groups.

∙ In this case, the two solutions are equally good, but this is not allways the case.
∙ In general, the expected codeword length L is bounded as

H(X) ≤ L ≤ H(X) + 1.

That is, an upper bound for the coding redundancy of one bit.
∙ The expected codeword length is 2 in both example 1 and 2, and the entropy is about
1.92 bits.

34



huffman coding

∙ An instantaneous coding algorithm.

∙ Optimal in the sense that it achieves minimal coding redundancy.
∙ Algorithm for encoding a sequence of n symbols with a binary Huffman code and
alphabeth {0, 1}:

1. Sort the symbols by decreasing probability.
2. Merge the two least likely symbols to a group and give the group a probability equal to

the sum of the probabilities of the members in the group. Sort the new sequence by
decreasing probability.

3. Repeat step 2. until there are only two groups left.
4. Represent the merging as a binary tree, and assign 0 to the left branch and 1 to the right

branch.
5. Every symbol in the original sequence is now at a leaf node. Traverse the tree from the

root to the corresponding leaf node, and append the symbols from the traversal to
create the codeword.

35



huffman coding

∙ An instantaneous coding algorithm.
∙ Optimal in the sense that it achieves minimal coding redundancy.

∙ Algorithm for encoding a sequence of n symbols with a binary Huffman code and
alphabeth {0, 1}:

1. Sort the symbols by decreasing probability.
2. Merge the two least likely symbols to a group and give the group a probability equal to

the sum of the probabilities of the members in the group. Sort the new sequence by
decreasing probability.

3. Repeat step 2. until there are only two groups left.
4. Represent the merging as a binary tree, and assign 0 to the left branch and 1 to the right

branch.
5. Every symbol in the original sequence is now at a leaf node. Traverse the tree from the

root to the corresponding leaf node, and append the symbols from the traversal to
create the codeword.

35



huffman coding

∙ An instantaneous coding algorithm.
∙ Optimal in the sense that it achieves minimal coding redundancy.
∙ Algorithm for encoding a sequence of n symbols with a binary Huffman code and
alphabeth {0, 1}:

1. Sort the symbols by decreasing probability.
2. Merge the two least likely symbols to a group and give the group a probability equal to

the sum of the probabilities of the members in the group. Sort the new sequence by
decreasing probability.

3. Repeat step 2. until there are only two groups left.
4. Represent the merging as a binary tree, and assign 0 to the left branch and 1 to the right

branch.
5. Every symbol in the original sequence is now at a leaf node. Traverse the tree from the

root to the corresponding leaf node, and append the symbols from the traversal to
create the codeword.

35



huffman coding: example

The six most common letters in the english
language, and their relative occurance
frequency (normslized within this selection),
is given in the table below. The resulting
Huffman source code is given as c.

x p(x) c(x)

a 0.160 000
e 0.248 10
i 0.137 010
n 0.131 011
o 0.146 001
t 0.178 11

Figure 7: Huffman procedure example with resulting binary tree.

36



huffman coding: example

∙ The expected codeword length in the previous example is

L =
∑
i

lipi

= 3 · 0.160 + 2 · 0.248 + 3 · 0.137 + 3 · 0.131 + 3 · 0.146 + 2 · 0.178
= 2.574

∙ And the entropy is
H = −

∑
i

pi log2 pi

≈ 2.547

∙ Thus, the coding redundancy is L−H ≈ 0.027.

37



huffman coding: example

∙ The expected codeword length in the previous example is

L =
∑
i

lipi

= 3 · 0.160 + 2 · 0.248 + 3 · 0.137 + 3 · 0.131 + 3 · 0.146 + 2 · 0.178
= 2.574

∙ And the entropy is
H = −

∑
i

pi log2 pi

≈ 2.547

∙ Thus, the coding redundancy is L−H ≈ 0.027.

37



huffman coding: coding redundancy

∙ Shannon-Fano codes has a 1 bit upper limit for the coding redundancy.

∙ It can be shown1 that Huffman codes can achieve an even tighter bound

L−H ≤ pmax + log2
(
2 log2 e

e

)
,

where pmax is the probability of the most frequent symbol.
∙ Thus, the coding redundancy increases with increasing pmax.

1R.G. Gallagger, Variations on a theme by Huffman, IEEE Transactions on Information Theory, 24(6), 668-674,
1978.

38



huffman coding: coding redundancy

∙ Shannon-Fano codes has a 1 bit upper limit for the coding redundancy.
∙ It can be shown1 that Huffman codes can achieve an even tighter bound

L−H ≤ pmax + log2
(
2 log2 e

e

)
,

where pmax is the probability of the most frequent symbol.

∙ Thus, the coding redundancy increases with increasing pmax.

1R.G. Gallagger, Variations on a theme by Huffman, IEEE Transactions on Information Theory, 24(6), 668-674,
1978.

38



huffman coding: coding redundancy

∙ Shannon-Fano codes has a 1 bit upper limit for the coding redundancy.
∙ It can be shown1 that Huffman codes can achieve an even tighter bound

L−H ≤ pmax + log2
(
2 log2 e

e

)
,

where pmax is the probability of the most frequent symbol.
∙ Thus, the coding redundancy increases with increasing pmax.

1R.G. Gallagger, Variations on a theme by Huffman, IEEE Transactions on Information Theory, 24(6), 668-674,
1978.

38



huffman and shannon-fano coding, general remarks

∙ Both are instantaneous codes (no codeword is a prefix of another one).

∙ Huffman codes are optimal, Shannon-Fano codes are not. Optimal in the sense that
they achieve minimal expected codeword length (and when we encode one symbol
at the time).

∙ There exist several optimal codes (we can for instance just interchange every symbol
in an optimal code to create a new one).

∙ Codewords for frequent symbols are shorter than codewords for rare symbols.
∙ The two least likely symbols have equal codeword length. And differ only in the last
bit.

∙ Note that the source code also needs to be transmitted with the code in order to be
able to decode it. The source code for a b-bit image contains up to n = 2b

codewords, where the longes codeword can be up to n− 1 bits.

39



huffman and shannon-fano coding, general remarks

∙ Both are instantaneous codes (no codeword is a prefix of another one).
∙ Huffman codes are optimal, Shannon-Fano codes are not. Optimal in the sense that
they achieve minimal expected codeword length (and when we encode one symbol
at the time).

∙ There exist several optimal codes (we can for instance just interchange every symbol
in an optimal code to create a new one).

∙ Codewords for frequent symbols are shorter than codewords for rare symbols.
∙ The two least likely symbols have equal codeword length. And differ only in the last
bit.

∙ Note that the source code also needs to be transmitted with the code in order to be
able to decode it. The source code for a b-bit image contains up to n = 2b

codewords, where the longes codeword can be up to n− 1 bits.

39



huffman and shannon-fano coding, general remarks

∙ Both are instantaneous codes (no codeword is a prefix of another one).
∙ Huffman codes are optimal, Shannon-Fano codes are not. Optimal in the sense that
they achieve minimal expected codeword length (and when we encode one symbol
at the time).

∙ There exist several optimal codes (we can for instance just interchange every symbol
in an optimal code to create a new one).

∙ Codewords for frequent symbols are shorter than codewords for rare symbols.
∙ The two least likely symbols have equal codeword length. And differ only in the last
bit.

∙ Note that the source code also needs to be transmitted with the code in order to be
able to decode it. The source code for a b-bit image contains up to n = 2b

codewords, where the longes codeword can be up to n− 1 bits.

39



huffman and shannon-fano coding, general remarks

∙ Both are instantaneous codes (no codeword is a prefix of another one).
∙ Huffman codes are optimal, Shannon-Fano codes are not. Optimal in the sense that
they achieve minimal expected codeword length (and when we encode one symbol
at the time).

∙ There exist several optimal codes (we can for instance just interchange every symbol
in an optimal code to create a new one).

∙ Codewords for frequent symbols are shorter than codewords for rare symbols.

∙ The two least likely symbols have equal codeword length. And differ only in the last
bit.

∙ Note that the source code also needs to be transmitted with the code in order to be
able to decode it. The source code for a b-bit image contains up to n = 2b

codewords, where the longes codeword can be up to n− 1 bits.

39



huffman and shannon-fano coding, general remarks

∙ Both are instantaneous codes (no codeword is a prefix of another one).
∙ Huffman codes are optimal, Shannon-Fano codes are not. Optimal in the sense that
they achieve minimal expected codeword length (and when we encode one symbol
at the time).

∙ There exist several optimal codes (we can for instance just interchange every symbol
in an optimal code to create a new one).

∙ Codewords for frequent symbols are shorter than codewords for rare symbols.
∙ The two least likely symbols have equal codeword length. And differ only in the last
bit.

∙ Note that the source code also needs to be transmitted with the code in order to be
able to decode it. The source code for a b-bit image contains up to n = 2b

codewords, where the longes codeword can be up to n− 1 bits.

39



huffman and shannon-fano coding, general remarks

∙ Both are instantaneous codes (no codeword is a prefix of another one).
∙ Huffman codes are optimal, Shannon-Fano codes are not. Optimal in the sense that
they achieve minimal expected codeword length (and when we encode one symbol
at the time).

∙ There exist several optimal codes (we can for instance just interchange every symbol
in an optimal code to create a new one).

∙ Codewords for frequent symbols are shorter than codewords for rare symbols.
∙ The two least likely symbols have equal codeword length. And differ only in the last
bit.

∙ Note that the source code also needs to be transmitted with the code in order to be
able to decode it. The source code for a b-bit image contains up to n = 2b

codewords, where the longes codeword can be up to n− 1 bits.

39



ideal and actual code-word length

∙ For an optimal code, the expected codeword length L must be equal to the entropy∑
x

p(x)l(x) = −
∑
x

p(x) log2 p(x)

∙ That is, l(x) = log2(1/p(x)), which is the information content of the event x.

Figure 8: Ideal and actual codeword length from example in fig. 7

40



when does huffman coding not give any coding redundancy

∙ The ideal codeword length is

l(x) = log2(1/p(x))

∙ Since we only deal with integer codeword lengths, this is only possible when

p(x) =
1

2k

for some integer k.
∙ Example

x x1 x2 x3 x4 x5 x6

p(x) 1
2

1
4

1
8

1
16

1
32

1
64

c(x) 0 10 110 1110 11110 11111

∙ In this example L = H = 1.9375, that is, no coding redundancy.

41



when does huffman coding not give any coding redundancy

∙ The ideal codeword length is

l(x) = log2(1/p(x))

∙ Since we only deal with integer codeword lengths, this is only possible when

p(x) =
1

2k

for some integer k.

∙ Example
x x1 x2 x3 x4 x5 x6

p(x) 1
2

1
4

1
8

1
16

1
32

1
64

c(x) 0 10 110 1110 11110 11111

∙ In this example L = H = 1.9375, that is, no coding redundancy.

41



when does huffman coding not give any coding redundancy

∙ The ideal codeword length is

l(x) = log2(1/p(x))

∙ Since we only deal with integer codeword lengths, this is only possible when

p(x) =
1

2k

for some integer k.
∙ Example

x x1 x2 x3 x4 x5 x6

p(x) 1
2

1
4

1
8

1
16

1
32

1
64

c(x) 0 10 110 1110 11110 11111

∙ In this example L = H = 1.9375, that is, no coding redundancy.

41



arithmetic coding

∙ Lossless compression method.

∙ Variable code length, codes more probable symbols more compactly.
∙ Contrary to Shannon-Fano coding and Huffman coding, which codes symbol by
symbol, arithmetic coding encodes the entire signal to one number d ∈ [0, 1).

∙ Same expected codeword length as Huffman code.
∙ Can achieve shorter codewords for the entire sequence than Huffman code. This is
because one is not limited to integer codewords for each symbol.

42



arithmetic coding

∙ Lossless compression method.
∙ Variable code length, codes more probable symbols more compactly.

∙ Contrary to Shannon-Fano coding and Huffman coding, which codes symbol by
symbol, arithmetic coding encodes the entire signal to one number d ∈ [0, 1).

∙ Same expected codeword length as Huffman code.
∙ Can achieve shorter codewords for the entire sequence than Huffman code. This is
because one is not limited to integer codewords for each symbol.

42



arithmetic coding

∙ Lossless compression method.
∙ Variable code length, codes more probable symbols more compactly.
∙ Contrary to Shannon-Fano coding and Huffman coding, which codes symbol by
symbol, arithmetic coding encodes the entire signal to one number d ∈ [0, 1).

∙ Same expected codeword length as Huffman code.
∙ Can achieve shorter codewords for the entire sequence than Huffman code. This is
because one is not limited to integer codewords for each symbol.

42



arithmetic coding

∙ Lossless compression method.
∙ Variable code length, codes more probable symbols more compactly.
∙ Contrary to Shannon-Fano coding and Huffman coding, which codes symbol by
symbol, arithmetic coding encodes the entire signal to one number d ∈ [0, 1).

∙ Same expected codeword length as Huffman code.

∙ Can achieve shorter codewords for the entire sequence than Huffman code. This is
because one is not limited to integer codewords for each symbol.

42



arithmetic coding

∙ Lossless compression method.
∙ Variable code length, codes more probable symbols more compactly.
∙ Contrary to Shannon-Fano coding and Huffman coding, which codes symbol by
symbol, arithmetic coding encodes the entire signal to one number d ∈ [0, 1).

∙ Same expected codeword length as Huffman code.
∙ Can achieve shorter codewords for the entire sequence than Huffman code. This is
because one is not limited to integer codewords for each symbol.

42



arithmetic coding: encoding overview

∙ The signal is a string of symbols x, where the symbols are taken from some
alphabeth X .

∙ As usual, we model the symbols as realizations of a discrete random variable X with
an associated probability mass function pX .

∙ For each symbol in the signal, we use the pmf. to associate a unique interval with
the part of the signal we have processed so far.

∙ At the end, when the whole signal is processed, we are left with a decimal interval
which is unique to the string of symbols that is our signal.

∙ We then find the number within this decimal with the shortest binary representation,
and use this as the encoded signal.

43



arithmetic coding: encoding overview

∙ The signal is a string of symbols x, where the symbols are taken from some
alphabeth X .

∙ As usual, we model the symbols as realizations of a discrete random variable X with
an associated probability mass function pX .

∙ For each symbol in the signal, we use the pmf. to associate a unique interval with
the part of the signal we have processed so far.

∙ At the end, when the whole signal is processed, we are left with a decimal interval
which is unique to the string of symbols that is our signal.

∙ We then find the number within this decimal with the shortest binary representation,
and use this as the encoded signal.

43



arithmetic coding: encoding overview

∙ The signal is a string of symbols x, where the symbols are taken from some
alphabeth X .

∙ As usual, we model the symbols as realizations of a discrete random variable X with
an associated probability mass function pX .

∙ For each symbol in the signal, we use the pmf. to associate a unique interval with
the part of the signal we have processed so far.

∙ At the end, when the whole signal is processed, we are left with a decimal interval
which is unique to the string of symbols that is our signal.

∙ We then find the number within this decimal with the shortest binary representation,
and use this as the encoded signal.

43



arithmetic coding: encoding overview

∙ The signal is a string of symbols x, where the symbols are taken from some
alphabeth X .

∙ As usual, we model the symbols as realizations of a discrete random variable X with
an associated probability mass function pX .

∙ For each symbol in the signal, we use the pmf. to associate a unique interval with
the part of the signal we have processed so far.

∙ At the end, when the whole signal is processed, we are left with a decimal interval
which is unique to the string of symbols that is our signal.

∙ We then find the number within this decimal with the shortest binary representation,
and use this as the encoded signal.

43



arithmetic coding: encoding overview

∙ The signal is a string of symbols x, where the symbols are taken from some
alphabeth X .

∙ As usual, we model the symbols as realizations of a discrete random variable X with
an associated probability mass function pX .

∙ For each symbol in the signal, we use the pmf. to associate a unique interval with
the part of the signal we have processed so far.

∙ At the end, when the whole signal is processed, we are left with a decimal interval
which is unique to the string of symbols that is our signal.

∙ We then find the number within this decimal with the shortest binary representation,
and use this as the encoded signal.

43



arithmetic encoding

1. Initialize current interval to [0.0, 1.0)

2. Create a list of interval edges q = [0, pX(x1), pX(x1) + pX(x2), . . . ,
∑k

i=1 pX(xk), . . .]

3. Initialize the interval [cmin, cmax) = [0, 1)].
4. For each symbol xi in the signal (from left to right):

4.1 Create a new set of interval edges: qnew ← cmin + (cmin − cmax) · q
4.2 Let the new current interval [cmin, cmax) be the interval in qnew that xi correspond to.

5. Find a decimal number within the final interval with the shortes binary sequence.
6. The encoded signal is this shortest binary sequence.

44



arithmetic encoding

1. Initialize current interval to [0.0, 1.0)

2. Create a list of interval edges q = [0, pX(x1), pX(x1) + pX(x2), . . . ,
∑k

i=1 pX(xk), . . .]

3. Initialize the interval [cmin, cmax) = [0, 1)].
4. For each symbol xi in the signal (from left to right):

4.1 Create a new set of interval edges: qnew ← cmin + (cmin − cmax) · q
4.2 Let the new current interval [cmin, cmax) be the interval in qnew that xi correspond to.

5. Find a decimal number within the final interval with the shortes binary sequence.
6. The encoded signal is this shortest binary sequence.

44



arithmetic encoding

1. Initialize current interval to [0.0, 1.0)

2. Create a list of interval edges q = [0, pX(x1), pX(x1) + pX(x2), . . . ,
∑k

i=1 pX(xk), . . .]

3. Initialize the interval [cmin, cmax) = [0, 1)].

4. For each symbol xi in the signal (from left to right):
4.1 Create a new set of interval edges: qnew ← cmin + (cmin − cmax) · q
4.2 Let the new current interval [cmin, cmax) be the interval in qnew that xi correspond to.

5. Find a decimal number within the final interval with the shortes binary sequence.
6. The encoded signal is this shortest binary sequence.

44



arithmetic encoding

1. Initialize current interval to [0.0, 1.0)

2. Create a list of interval edges q = [0, pX(x1), pX(x1) + pX(x2), . . . ,
∑k

i=1 pX(xk), . . .]

3. Initialize the interval [cmin, cmax) = [0, 1)].
4. For each symbol xi in the signal (from left to right):

4.1 Create a new set of interval edges: qnew ← cmin + (cmin − cmax) · q
4.2 Let the new current interval [cmin, cmax) be the interval in qnew that xi correspond to.

5. Find a decimal number within the final interval with the shortes binary sequence.
6. The encoded signal is this shortest binary sequence.

44



arithmetic encoding

1. Initialize current interval to [0.0, 1.0)

2. Create a list of interval edges q = [0, pX(x1), pX(x1) + pX(x2), . . . ,
∑k

i=1 pX(xk), . . .]

3. Initialize the interval [cmin, cmax) = [0, 1)].
4. For each symbol xi in the signal (from left to right):

4.1 Create a new set of interval edges: qnew ← cmin + (cmin − cmax) · q
4.2 Let the new current interval [cmin, cmax) be the interval in qnew that xi correspond to.

5. Find a decimal number within the final interval with the shortes binary sequence.

6. The encoded signal is this shortest binary sequence.

44



arithmetic encoding

1. Initialize current interval to [0.0, 1.0)

2. Create a list of interval edges q = [0, pX(x1), pX(x1) + pX(x2), . . . ,
∑k

i=1 pX(xk), . . .]

3. Initialize the interval [cmin, cmax) = [0, 1)].
4. For each symbol xi in the signal (from left to right):

4.1 Create a new set of interval edges: qnew ← cmin + (cmin − cmax) · q
4.2 Let the new current interval [cmin, cmax) be the interval in qnew that xi correspond to.

5. Find a decimal number within the final interval with the shortes binary sequence.
6. The encoded signal is this shortest binary sequence.

44



arithmetic encoding: example

∙ Suppose we have an alphabeth {a1, a2, a3, a4} with associated pmf.
pX = [0.2, 0.2, 0.4, 0.2].

∙ We want to encode the sequence a1a2a3a3a4.
Step-by-step solution, current interval is initialized to
[0, 1).

Symbol Interval Sequence Interval

a1 [0.0, 0.2) a1 [0.0, 0.2)

a2 [0.2, 0.4) a1a2 [0.04, 0.08)

a3 [0.4, 0.8) a1a2a3 [0.056, 0.072)

a3 [0.4, 0.8) a1a2a3a3 [0.0624, 0.0688)

a4 [0.8, 1.0) a1a2a3a3a4 [0.06752, 0.0688)

45



arithmetic encoding: example

∙ Suppose we have an alphabeth {a1, a2, a3, a4} with associated pmf.
pX = [0.2, 0.2, 0.4, 0.2].

∙ We want to encode the sequence a1a2a3a3a4.

Step-by-step solution, current interval is initialized to
[0, 1).

Symbol Interval Sequence Interval

a1 [0.0, 0.2) a1 [0.0, 0.2)

a2 [0.2, 0.4) a1a2 [0.04, 0.08)

a3 [0.4, 0.8) a1a2a3 [0.056, 0.072)

a3 [0.4, 0.8) a1a2a3a3 [0.0624, 0.0688)

a4 [0.8, 1.0) a1a2a3a3a4 [0.06752, 0.0688)

45



arithmetic encoding: example

∙ Suppose we have an alphabeth {a1, a2, a3, a4} with associated pmf.
pX = [0.2, 0.2, 0.4, 0.2].

∙ We want to encode the sequence a1a2a3a3a4.
Step-by-step solution, current interval is initialized to
[0, 1).

Symbol Interval Sequence Interval

a1 [0.0, 0.2) a1 [0.0, 0.2)

a2 [0.2, 0.4) a1a2 [0.04, 0.08)

a3 [0.4, 0.8) a1a2a3 [0.056, 0.072)

a3 [0.4, 0.8) a1a2a3a3 [0.0624, 0.0688)

a4 [0.8, 1.0) a1a2a3a3a4 [0.06752, 0.0688)

45



decimal numbers as binary sequence

∙ We do not store/transmit the signal as a decimal number, but as a binary sequence.

∙ How to represent some interval with the shortest possible binary sequence, that is,
with the least number of bits?

∙ First, we need to know how to represent a decimal number in binary.
∙ Any decimal number d ∈ [0, 1) can be written as a power series

d =

∞∑
n=1

bn

(
1

2

)n

= b1
1

21
+ b2

1

22
+ b3

1

23
+ · · ·

where the weights are either 0 or 1 (bn ∈ {0, 1}, n ∈ {1, 2, 3, . . .}).
∙ The resulting binary sequence b1b2b3 · · · is then the binary representation of d.
∙ We use a subscript to indicate what system we are in d10 for decimal, and 0.d2 for binary.
∙ For instance: 0.70312510 = 0.1011012 since

0.703125 = 1
1

21
+ 0

1

22
+ 1

1

23
+ 1

1

24
+ 0

1

25
+ 1

1

26

46



decimal numbers as binary sequence

∙ We do not store/transmit the signal as a decimal number, but as a binary sequence.
∙ How to represent some interval with the shortest possible binary sequence, that is,
with the least number of bits?

∙ First, we need to know how to represent a decimal number in binary.
∙ Any decimal number d ∈ [0, 1) can be written as a power series

d =

∞∑
n=1

bn

(
1

2

)n

= b1
1

21
+ b2

1

22
+ b3

1

23
+ · · ·

where the weights are either 0 or 1 (bn ∈ {0, 1}, n ∈ {1, 2, 3, . . .}).
∙ The resulting binary sequence b1b2b3 · · · is then the binary representation of d.
∙ We use a subscript to indicate what system we are in d10 for decimal, and 0.d2 for binary.
∙ For instance: 0.70312510 = 0.1011012 since

0.703125 = 1
1

21
+ 0

1

22
+ 1

1

23
+ 1

1

24
+ 0

1

25
+ 1

1

26

46



decimal numbers as binary sequence

∙ We do not store/transmit the signal as a decimal number, but as a binary sequence.
∙ How to represent some interval with the shortest possible binary sequence, that is,
with the least number of bits?

∙ First, we need to know how to represent a decimal number in binary.
∙ Any decimal number d ∈ [0, 1) can be written as a power series

d =
∞∑

n=1

bn

(
1

2

)n

= b1
1

21
+ b2

1

22
+ b3

1

23
+ · · ·

where the weights are either 0 or 1 (bn ∈ {0, 1}, n ∈ {1, 2, 3, . . .}).
∙ The resulting binary sequence b1b2b3 · · · is then the binary representation of d.
∙ We use a subscript to indicate what system we are in d10 for decimal, and 0.d2 for binary.
∙ For instance: 0.70312510 = 0.1011012 since

0.703125 = 1
1

21
+ 0

1

22
+ 1

1

23
+ 1

1

24
+ 0

1

25
+ 1

1

26

46



decimal numbers as binary sequence: algorithm

Algorithm 1 Binary representation of decimal
number d ∈ [0, 1)

procedure Binary(d)
r ← d ▷ Reminder
b← ⌊2r⌋ ▷ Binary weight
s← [b] ▷ Binary sequence
while r > 0 do

r ← 2r − b

b← ⌊2r⌋
s← s+ [b] ▷ Append b to s

end while
return s

end procedure

∙ Define a reminder rk =
∑∞

n=k bn
(
1
2

)n.
∙ Notice that d = r1.
∙ Notice also that 2r1 = b1 + r2.
∙ If the integer part of 2r1 is 0, b1 must be
0.

∙ Also, if the integer part of 2r1 is 1, b1
must be 1.

∙ This is also the case for the rest of the
reminders: bk = ⌊2rk⌋.

∙ And we can find the next reminder
rk+1 = 2rk − bk .

∙ Terminate the search when the
reminder is zero.

47



shortest binary representation within a decimal interval

∙ We know how to represent a decimal number with a binary sequence.

∙ We now need to find the shortest binary sequence within a decimal interval
[dmin, dmax).

∙ Imagine that we have a current interval [cmin, cmax).
∙ We want to fit this interval inside the decimal interval.
∙ We do this stepwise; at each step k = 1, 2, . . . we either increase cmin or decrease
cmax.

∙ We increase cmin by adding 1
2k
.

∙ We decrease cmax by subtracting 1
2k
.

∙ If we need to increase cmin, we add 1 to the binary sequence.
∙ If we need to decrease cmax, we add 0 to the binary sequence.
∙ Allways try to add a 1, and add a 0 if this is not possible.
∙ If neither cmin or cmax is changed at the current step, terminate the search.

48



shortest binary representation within a decimal interval

∙ We know how to represent a decimal number with a binary sequence.
∙ We now need to find the shortest binary sequence within a decimal interval
[dmin, dmax).

∙ Imagine that we have a current interval [cmin, cmax).
∙ We want to fit this interval inside the decimal interval.
∙ We do this stepwise; at each step k = 1, 2, . . . we either increase cmin or decrease
cmax.

∙ We increase cmin by adding 1
2k
.

∙ We decrease cmax by subtracting 1
2k
.

∙ If we need to increase cmin, we add 1 to the binary sequence.
∙ If we need to decrease cmax, we add 0 to the binary sequence.
∙ Allways try to add a 1, and add a 0 if this is not possible.
∙ If neither cmin or cmax is changed at the current step, terminate the search.

48



shortest binary representation within a decimal interval

∙ We know how to represent a decimal number with a binary sequence.
∙ We now need to find the shortest binary sequence within a decimal interval
[dmin, dmax).

∙ Imagine that we have a current interval [cmin, cmax).

∙ We want to fit this interval inside the decimal interval.
∙ We do this stepwise; at each step k = 1, 2, . . . we either increase cmin or decrease
cmax.

∙ We increase cmin by adding 1
2k
.

∙ We decrease cmax by subtracting 1
2k
.

∙ If we need to increase cmin, we add 1 to the binary sequence.
∙ If we need to decrease cmax, we add 0 to the binary sequence.
∙ Allways try to add a 1, and add a 0 if this is not possible.
∙ If neither cmin or cmax is changed at the current step, terminate the search.

48



shortest binary representation within a decimal interval

∙ We know how to represent a decimal number with a binary sequence.
∙ We now need to find the shortest binary sequence within a decimal interval
[dmin, dmax).

∙ Imagine that we have a current interval [cmin, cmax).
∙ We want to fit this interval inside the decimal interval.

∙ We do this stepwise; at each step k = 1, 2, . . . we either increase cmin or decrease
cmax.

∙ We increase cmin by adding 1
2k
.

∙ We decrease cmax by subtracting 1
2k
.

∙ If we need to increase cmin, we add 1 to the binary sequence.
∙ If we need to decrease cmax, we add 0 to the binary sequence.
∙ Allways try to add a 1, and add a 0 if this is not possible.
∙ If neither cmin or cmax is changed at the current step, terminate the search.

48



shortest binary representation within a decimal interval

∙ We know how to represent a decimal number with a binary sequence.
∙ We now need to find the shortest binary sequence within a decimal interval
[dmin, dmax).

∙ Imagine that we have a current interval [cmin, cmax).
∙ We want to fit this interval inside the decimal interval.
∙ We do this stepwise; at each step k = 1, 2, . . . we either increase cmin or decrease
cmax.

∙ We increase cmin by adding 1
2k
.

∙ We decrease cmax by subtracting 1
2k
.

∙ If we need to increase cmin, we add 1 to the binary sequence.
∙ If we need to decrease cmax, we add 0 to the binary sequence.
∙ Allways try to add a 1, and add a 0 if this is not possible.
∙ If neither cmin or cmax is changed at the current step, terminate the search.

48



shortest binary representation within a decimal interval

∙ We know how to represent a decimal number with a binary sequence.
∙ We now need to find the shortest binary sequence within a decimal interval
[dmin, dmax).

∙ Imagine that we have a current interval [cmin, cmax).
∙ We want to fit this interval inside the decimal interval.
∙ We do this stepwise; at each step k = 1, 2, . . . we either increase cmin or decrease
cmax.

∙ We increase cmin by adding 1
2k
.

∙ We decrease cmax by subtracting 1
2k
.

∙ If we need to increase cmin, we add 1 to the binary sequence.
∙ If we need to decrease cmax, we add 0 to the binary sequence.
∙ Allways try to add a 1, and add a 0 if this is not possible.
∙ If neither cmin or cmax is changed at the current step, terminate the search.

48



shortest binary representation within a decimal interval

∙ We know how to represent a decimal number with a binary sequence.
∙ We now need to find the shortest binary sequence within a decimal interval
[dmin, dmax).

∙ Imagine that we have a current interval [cmin, cmax).
∙ We want to fit this interval inside the decimal interval.
∙ We do this stepwise; at each step k = 1, 2, . . . we either increase cmin or decrease
cmax.

∙ We increase cmin by adding 1
2k
.

∙ We decrease cmax by subtracting 1
2k
.

∙ If we need to increase cmin, we add 1 to the binary sequence.
∙ If we need to decrease cmax, we add 0 to the binary sequence.
∙ Allways try to add a 1, and add a 0 if this is not possible.
∙ If neither cmin or cmax is changed at the current step, terminate the search.

48



shortest binary representation within a decimal interval

∙ We know how to represent a decimal number with a binary sequence.
∙ We now need to find the shortest binary sequence within a decimal interval
[dmin, dmax).

∙ Imagine that we have a current interval [cmin, cmax).
∙ We want to fit this interval inside the decimal interval.
∙ We do this stepwise; at each step k = 1, 2, . . . we either increase cmin or decrease
cmax.

∙ We increase cmin by adding 1
2k
.

∙ We decrease cmax by subtracting 1
2k
.

∙ If we need to increase cmin, we add 1 to the binary sequence.

∙ If we need to decrease cmax, we add 0 to the binary sequence.
∙ Allways try to add a 1, and add a 0 if this is not possible.
∙ If neither cmin or cmax is changed at the current step, terminate the search.

48



shortest binary representation within a decimal interval

∙ We know how to represent a decimal number with a binary sequence.
∙ We now need to find the shortest binary sequence within a decimal interval
[dmin, dmax).

∙ Imagine that we have a current interval [cmin, cmax).
∙ We want to fit this interval inside the decimal interval.
∙ We do this stepwise; at each step k = 1, 2, . . . we either increase cmin or decrease
cmax.

∙ We increase cmin by adding 1
2k
.

∙ We decrease cmax by subtracting 1
2k
.

∙ If we need to increase cmin, we add 1 to the binary sequence.
∙ If we need to decrease cmax, we add 0 to the binary sequence.

∙ Allways try to add a 1, and add a 0 if this is not possible.
∙ If neither cmin or cmax is changed at the current step, terminate the search.

48



shortest binary representation within a decimal interval

∙ We know how to represent a decimal number with a binary sequence.
∙ We now need to find the shortest binary sequence within a decimal interval
[dmin, dmax).

∙ Imagine that we have a current interval [cmin, cmax).
∙ We want to fit this interval inside the decimal interval.
∙ We do this stepwise; at each step k = 1, 2, . . . we either increase cmin or decrease
cmax.

∙ We increase cmin by adding 1
2k
.

∙ We decrease cmax by subtracting 1
2k
.

∙ If we need to increase cmin, we add 1 to the binary sequence.
∙ If we need to decrease cmax, we add 0 to the binary sequence.
∙ Allways try to add a 1, and add a 0 if this is not possible.

∙ If neither cmin or cmax is changed at the current step, terminate the search.

48



shortest binary representation within a decimal interval

∙ We know how to represent a decimal number with a binary sequence.
∙ We now need to find the shortest binary sequence within a decimal interval
[dmin, dmax).

∙ Imagine that we have a current interval [cmin, cmax).
∙ We want to fit this interval inside the decimal interval.
∙ We do this stepwise; at each step k = 1, 2, . . . we either increase cmin or decrease
cmax.

∙ We increase cmin by adding 1
2k
.

∙ We decrease cmax by subtracting 1
2k
.

∙ If we need to increase cmin, we add 1 to the binary sequence.
∙ If we need to decrease cmax, we add 0 to the binary sequence.
∙ Allways try to add a 1, and add a 0 if this is not possible.
∙ If neither cmin or cmax is changed at the current step, terminate the search.

48



shortest binary representation within decimal interval: algorithm

Algorithm 2 Find shortest binary representation in decimal interval

procedure ShortestBinSequence((dmin, dmax))
(cmin, cmax)← (0.0, 1.0) ▷ Initialize current interval
k ← 1 ▷ Step counter
s← [] ▷ Binary sequence
while True do

if (cmin < dmin) ∧ (cmin + 1
2k

< dmax) then
cmin ← cmin + 1

2k

s← s+ [1] ▷ Append 1 to s

else
if (cmax > dmax) ∧ (cmax − 1

2k
> dmin) then

cmin ← cmin + 1
2k

s← s+ [0] ▷ Append 0 to s

else
Exit loop

end if
end if

end while
return s

end procedure

49



arithmetic decoding

∙ Given an encoded signal b1b2b3 · · · bk , we first find the decimal representation

d =

k∑
n=1

bn

(
1

2

)n

∙ Similar to what we did in the encoding, we define a list of interval edges based on
the pmf q = [0, pX(x1), pX(x1) + pX(x2), . . . ,

∑k
i=1 pX(xk), . . .]

1. See what interval the decimal number lies in, set this as the current interval.
2. Decode the symbol corresponding to this interval (this is found via the alphabeth and q).
3. Scale the q to lie within the current interval.
4. Do step 1 to 3 until termination.

∙ Termination:
∙ Define a eod symbol (end of data), and stop when this is decoded. Note that this will
also need an associated probability in the model.

∙ Or, only decode a predefined number of symbols.

50



arithmetic decoding

∙ Given an encoded signal b1b2b3 · · · bk , we first find the decimal representation

d =

k∑
n=1

bn

(
1

2

)n

∙ Similar to what we did in the encoding, we define a list of interval edges based on
the pmf q = [0, pX(x1), pX(x1) + pX(x2), . . . ,

∑k
i=1 pX(xk), . . .]

1. See what interval the decimal number lies in, set this as the current interval.
2. Decode the symbol corresponding to this interval (this is found via the alphabeth and q).
3. Scale the q to lie within the current interval.
4. Do step 1 to 3 until termination.

∙ Termination:
∙ Define a eod symbol (end of data), and stop when this is decoded. Note that this will
also need an associated probability in the model.

∙ Or, only decode a predefined number of symbols.

50



arithmetic decoding

∙ Given an encoded signal b1b2b3 · · · bk , we first find the decimal representation

d =

k∑
n=1

bn

(
1

2

)n

∙ Similar to what we did in the encoding, we define a list of interval edges based on
the pmf q = [0, pX(x1), pX(x1) + pX(x2), . . . ,

∑k
i=1 pX(xk), . . .]

1. See what interval the decimal number lies in, set this as the current interval.
2. Decode the symbol corresponding to this interval (this is found via the alphabeth and q).
3. Scale the q to lie within the current interval.
4. Do step 1 to 3 until termination.

∙ Termination:
∙ Define a eod symbol (end of data), and stop when this is decoded. Note that this will
also need an associated probability in the model.

∙ Or, only decode a predefined number of symbols.

50



decoding: example

∙ Alphabeth: {a, b, c}. pX = [0.6, 0.2, 0.2]. q = [0.0, 0.6, 0.8, 1.0]

∙ Signal to decode: 10001
∙ First, we find that 0.100012 = 0.5312510

∙ Then we continue decoding symbol for symbol until termination:

[cmin, cmax) qnew Symbol Sequence

[0.0, 1.0) [0.0, 0.6, 0.8, 1.0) a a

[0.0, 0.6) [0.0, 0.36, 0.48, 0.6) c ac

[0.48, 0.6) [0.48, 0.552, 0.576, 0.6) a aca

[0.48, 0.552) [0.48, 0.5232, 0.5376, 0.552) b acab

[0.5232, 0.5376) [0.5232, 0.53184, 0.53472, 0.5376) a acaba

51



decoding: example

∙ Alphabeth: {a, b, c}. pX = [0.6, 0.2, 0.2]. q = [0.0, 0.6, 0.8, 1.0]

∙ Signal to decode: 10001

∙ First, we find that 0.100012 = 0.5312510

∙ Then we continue decoding symbol for symbol until termination:

[cmin, cmax) qnew Symbol Sequence

[0.0, 1.0) [0.0, 0.6, 0.8, 1.0) a a

[0.0, 0.6) [0.0, 0.36, 0.48, 0.6) c ac

[0.48, 0.6) [0.48, 0.552, 0.576, 0.6) a aca

[0.48, 0.552) [0.48, 0.5232, 0.5376, 0.552) b acab

[0.5232, 0.5376) [0.5232, 0.53184, 0.53472, 0.5376) a acaba

51



decoding: example

∙ Alphabeth: {a, b, c}. pX = [0.6, 0.2, 0.2]. q = [0.0, 0.6, 0.8, 1.0]

∙ Signal to decode: 10001
∙ First, we find that 0.100012 = 0.5312510

∙ Then we continue decoding symbol for symbol until termination:

[cmin, cmax) qnew Symbol Sequence

[0.0, 1.0) [0.0, 0.6, 0.8, 1.0) a a

[0.0, 0.6) [0.0, 0.36, 0.48, 0.6) c ac

[0.48, 0.6) [0.48, 0.552, 0.576, 0.6) a aca

[0.48, 0.552) [0.48, 0.5232, 0.5376, 0.552) b acab

[0.5232, 0.5376) [0.5232, 0.53184, 0.53472, 0.5376) a acaba

51



decoding: example

∙ Alphabeth: {a, b, c}. pX = [0.6, 0.2, 0.2]. q = [0.0, 0.6, 0.8, 1.0]

∙ Signal to decode: 10001
∙ First, we find that 0.100012 = 0.5312510

∙ Then we continue decoding symbol for symbol until termination:

[cmin, cmax) qnew Symbol Sequence

[0.0, 1.0) [0.0, 0.6, 0.8, 1.0) a a

[0.0, 0.6) [0.0, 0.36, 0.48, 0.6) c ac

[0.48, 0.6) [0.48, 0.552, 0.576, 0.6) a aca

[0.48, 0.552) [0.48, 0.5232, 0.5376, 0.552) b acab

[0.5232, 0.5376) [0.5232, 0.53184, 0.53472, 0.5376) a acaba

51



arithmetic coding: problems and solutions

∙ The size of decimal intervals can be very small, and require high floating point
precision:

∙ English alphabeth and letter frequency from wikipedia1.
∙ Encoding the signal: helloworld
∙ Final interval in encoding: [0.35040662146355034, 0.35040662146372126).
∙ Encoded to the binary sequence:
01011001101101000011111110010011011111010000

∙ One solution can be to store/transmit the most significan bit as soon as it is known,
and then double the size of the current interval.

∙ Many solutions exist, but they are often computationally expensive and behind
patents.

1https://en.wikipedia.org/wiki/Letter_frequency
52

https://en.wikipedia.org/wiki/Letter_frequency


arithmetic coding: problems and solutions

∙ The size of decimal intervals can be very small, and require high floating point
precision:

∙ English alphabeth and letter frequency from wikipedia1.
∙ Encoding the signal: helloworld
∙ Final interval in encoding: [0.35040662146355034, 0.35040662146372126).
∙ Encoded to the binary sequence:
01011001101101000011111110010011011111010000

∙ One solution can be to store/transmit the most significan bit as soon as it is known,
and then double the size of the current interval.

∙ Many solutions exist, but they are often computationally expensive and behind
patents.

1https://en.wikipedia.org/wiki/Letter_frequency
52

https://en.wikipedia.org/wiki/Letter_frequency


arithmetic coding: problems and solutions

∙ The size of decimal intervals can be very small, and require high floating point
precision:

∙ English alphabeth and letter frequency from wikipedia1.
∙ Encoding the signal: helloworld
∙ Final interval in encoding: [0.35040662146355034, 0.35040662146372126).
∙ Encoded to the binary sequence:
01011001101101000011111110010011011111010000

∙ One solution can be to store/transmit the most significan bit as soon as it is known,
and then double the size of the current interval.

∙ Many solutions exist, but they are often computationally expensive and behind
patents.

1https://en.wikipedia.org/wiki/Letter_frequency
52

https://en.wikipedia.org/wiki/Letter_frequency


arithmetic coding: different models

∙ Static histogram-based models are not optimal.

∙ There exists adaptive models where the probability mass function is adapted to the
stream of symbols.

∙ We know a priori that certain symbols are more likely given what has been
processed.

∙ As an example is the letter u more likely if we just have processed a q (or Q) in the
english language.

∙ No matter what, the transmitter and receiver needs to have the same model.

53



arithmetic coding: different models

∙ Static histogram-based models are not optimal.
∙ There exists adaptive models where the probability mass function is adapted to the
stream of symbols.

∙ We know a priori that certain symbols are more likely given what has been
processed.

∙ As an example is the letter u more likely if we just have processed a q (or Q) in the
english language.

∙ No matter what, the transmitter and receiver needs to have the same model.

53



arithmetic coding: different models

∙ Static histogram-based models are not optimal.
∙ There exists adaptive models where the probability mass function is adapted to the
stream of symbols.

∙ We know a priori that certain symbols are more likely given what has been
processed.

∙ As an example is the letter u more likely if we just have processed a q (or Q) in the
english language.

∙ No matter what, the transmitter and receiver needs to have the same model.

53



arithmetic coding: different models

∙ Static histogram-based models are not optimal.
∙ There exists adaptive models where the probability mass function is adapted to the
stream of symbols.

∙ We know a priori that certain symbols are more likely given what has been
processed.

∙ As an example is the letter u more likely if we just have processed a q (or Q) in the
english language.

∙ No matter what, the transmitter and receiver needs to have the same model.

53



arithmetic coding: different models

∙ Static histogram-based models are not optimal.
∙ There exists adaptive models where the probability mass function is adapted to the
stream of symbols.

∙ We know a priori that certain symbols are more likely given what has been
processed.

∙ As an example is the letter u more likely if we just have processed a q (or Q) in the
english language.

∙ No matter what, the transmitter and receiver needs to have the same model.

53



summary

∙ We compress data to reduce number of bits needed to represent the data.

∙ We do this by removing or reducing redundancy
∙ Psychovisual-, inter-pixel temporal-, inter-pixel spatial-, coding-redundancy.
∙ The compression is lossy when we remove irrelevant information from the data.

∙ Compression consist of three parts
∙ Transform
∙ Quantization. Leads to lossy compression.
∙ Coding, examples: Huffman, Shannon-Fano, Arithmetic.

54



summary

∙ We compress data to reduce number of bits needed to represent the data.
∙ We do this by removing or reducing redundancy

∙ Psychovisual-, inter-pixel temporal-, inter-pixel spatial-, coding-redundancy.
∙ The compression is lossy when we remove irrelevant information from the data.

∙ Compression consist of three parts
∙ Transform
∙ Quantization. Leads to lossy compression.
∙ Coding, examples: Huffman, Shannon-Fano, Arithmetic.

54



summary

∙ We compress data to reduce number of bits needed to represent the data.
∙ We do this by removing or reducing redundancy

∙ Psychovisual-, inter-pixel temporal-, inter-pixel spatial-, coding-redundancy.
∙ The compression is lossy when we remove irrelevant information from the data.

∙ Compression consist of three parts
∙ Transform
∙ Quantization. Leads to lossy compression.
∙ Coding, examples: Huffman, Shannon-Fano, Arithmetic.

54



Questions?

55


	Introduction

