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today’s lecture

∙ Difference transform

∙ Run-length transform
∙ LZW-compression
∙ JPEG compression
∙ Lossless predictive coding
∙ Sections from the compendium:

∙ 18.4 Noen transformer som brukes i kompresjon
∙ 18.7.3 Lempel-Ziv-Welch (LZW) algoritmen
∙ 18.8.0 Koding med informasjonstap
∙ 18.8.1 JPEG
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introduction and repetition



repetition: compression

Figure 1: Three steps of compression. Green arrows: lossless, red arrows: lossy

∙ We can group compression in to three steps:
∙ Transformation: A more compact image representation.
∙ Qunatization: Representation approximation.
∙ Coding: Transformation from one set of symbols to another.

∙ Compression can either be lossless or lossy.
∙ Lossless: We are able to perfectly reconstruct the original image.
∙ Lossy: We can only reconstruct the original image to a certain degree (but not perfect).

∙ There exists a number of methods for both types.
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repetition: different types of redundancies

∙ Psychovisual redundancy
∙ Information that we cannot percieve.
∙ Can be compressed by e.g. subsampling or by reducing the number of bits per pixel.

∙ Inter-pixel temporal redundancy
∙ Correlation between successive images in a sequence.
∙ A sequence can be compressed by only storing some frames, and then only differences
for the rest of the sequence.

∙ Inter-pixel spatial redundancy
∙ Correlation between neighbouring pixels within an image.
∙ Can be compressed by e.g. run-length methods.

∙ Coding redundancy
∙ Information is not represented optimally by the symbols in the code.
∙ This is often measured as the difference between average code length and some
theoretical minimum code length.
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compression methods and redundancy

Types of redundance→ Psycho- Inter-pixel Inter-pixel
visual temporal spatial Coding

Shannon-Fano coding ✓
Huffman coding ✓
Arithmetic coding ✓

Lossless predicative coding in time ✓
Lossless JPEG ✓ ✓
Lossy JPEG ✓ ✓ ✓
Defference transform ✓
Run-length transform ✓
LZW transform ✓ ✓
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some transforms



difference transform

∙ Horizontal pixels have often quite similar intensity values.

∙ Transform each pixelvalue f(x, y) as the difference
between the pixel at (x, y) and (x, y − 1).

∙ That is, for an m× n image f , let g[x, 0] = f [x, 0], and

g[x, y] = f [x, y]− f [x, y − 1], y ∈ {1, 2, . . . , n− 1} (1)

for all rows x ∈ {0, 1, . . . ,m− 1}.
∙ Note that for an image f taking values in [0, 2b − 1], values
of the transformed image g take values in
[−(2b − 1), 2b − 1].

∙ This means that we need to use b+ 1 bits for each g(x, y)

if we are going to use equal-size codeword for every value.
∙ Often, the differences are close to 0, which means that
natural binary coding of the differences are not optimal.

(a) Original (b) Graylevel intensity histogram

Figure 2: H ≈ 7.45 =⇒ cr ≈ 1.1

(a) Difference
transformed (b) Graylevel intensity histogram

Figure 3: H ≈ 5.07 =⇒ cr ≈ 1.6
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difference transform: forward

Algorithm 1 Forward difference transform
procedure ForwardDiff(f ) ▷ f is an image of shape m× n

g ← 0 ▷ Difference image with same shape as f
for r ∈ {0, 1, . . . ,m} do

g[r, 0]← f [r, 0]

for c ∈ {1, 2, . . . , n− 1} do
g[r, c]← f [r, c]− f [r, c− 1]

end for
end for
return g

end procedure
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difference transform: backward

Algorithm 2 Backward difference transform
procedure BackwardDiff(g) ▷ g is an image of shape m× n

h← 0 ▷ Image with same shape as g
for r ∈ {0, 1, . . . ,m} do

h[r, 0]← g[r, 0]

for c ∈ {1, 2, . . . , n− 1} do
h[r, c]← g[r, c] + h[r, c− 1]

end for
end for
return h

end procedure
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run-length transform

∙ Often, images contain objects with similar intensity values.

∙ Run-length transform use neighbouring pixels with the same value.
∙ Note: This requires equality, not only similarity.
∙ Run-length transform is compressing more with decreasing complexity.

∙ The run-length transform is reversible.
∙ Codes sequences of values into sequences of tuples: (value, run-length).
∙ Example:

∙ Values (24 numbers): 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 7, 7, 7, 7, 7, 7.
∙ Code (8 numbers): (3, 6), (5, 10), (4, 2), (7, 6).

∙ The coding determines how many bits we use to store the tuples.
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run-length transform in binary images

∙ In a binary image, we can ommit the value in coding. As long as we know what value
is coded first, the rest have to be alternating values.

∙ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1

∙ 5, 6, 2, 3, 5, 4

∙ The histogram of the run-lengths is often not flat, entropy-coding should therefore
be used to code the run-length sequence.
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bit slicing

∙ Bit slicing is extracting the value of a bit at a certain position.

∙ We will look at two different ways of doing this.
∙ Let v be the value we want to extract bit values from, and n denote the bit position,
starting from n = 0 at the least significant bit (LSB) to the most significant bit (MSB).

∙ As an example, 1010 = 10102 has values [1, 0, 1, 0] at n = [3, 2, 1, 0].
∙ Let b be the bit value at position n in v.
∙ Let us use python-syntax for bitwise operators:

∙ &: Bitwise and: 11002&10102 = 1000, therefore 1210&1010 = 8.
∙ //: Integer division: 23//4 = 5 since 23/4 = 5 + 3/4.
∙ ≪: Left bit-shift: 1010 ≪ 310 = 8010 since 10102 ≪ 310 = 10100002.

12



bit slicing

∙ Bit slicing is extracting the value of a bit at a certain position.
∙ We will look at two different ways of doing this.

∙ Let v be the value we want to extract bit values from, and n denote the bit position,
starting from n = 0 at the least significant bit (LSB) to the most significant bit (MSB).

∙ As an example, 1010 = 10102 has values [1, 0, 1, 0] at n = [3, 2, 1, 0].
∙ Let b be the bit value at position n in v.
∙ Let us use python-syntax for bitwise operators:

∙ &: Bitwise and: 11002&10102 = 1000, therefore 1210&1010 = 8.
∙ //: Integer division: 23//4 = 5 since 23/4 = 5 + 3/4.
∙ ≪: Left bit-shift: 1010 ≪ 310 = 8010 since 10102 ≪ 310 = 10100002.

12



bit slicing

∙ Bit slicing is extracting the value of a bit at a certain position.
∙ We will look at two different ways of doing this.
∙ Let v be the value we want to extract bit values from, and n denote the bit position,
starting from n = 0 at the least significant bit (LSB) to the most significant bit (MSB).

∙ As an example, 1010 = 10102 has values [1, 0, 1, 0] at n = [3, 2, 1, 0].
∙ Let b be the bit value at position n in v.
∙ Let us use python-syntax for bitwise operators:

∙ &: Bitwise and: 11002&10102 = 1000, therefore 1210&1010 = 8.
∙ //: Integer division: 23//4 = 5 since 23/4 = 5 + 3/4.
∙ ≪: Left bit-shift: 1010 ≪ 310 = 8010 since 10102 ≪ 310 = 10100002.

12



bit slicing

∙ Bit slicing is extracting the value of a bit at a certain position.
∙ We will look at two different ways of doing this.
∙ Let v be the value we want to extract bit values from, and n denote the bit position,
starting from n = 0 at the least significant bit (LSB) to the most significant bit (MSB).

∙ As an example, 1010 = 10102 has values [1, 0, 1, 0] at n = [3, 2, 1, 0].
∙ Let b be the bit value at position n in v.
∙ Let us use python-syntax for bitwise operators:

∙ &: Bitwise and: 11002&10102 = 1000, therefore 1210&1010 = 8.
∙ //: Integer division: 23//4 = 5 since 23/4 = 5 + 3/4.
∙ ≪: Left bit-shift: 1010 ≪ 310 = 8010 since 10102 ≪ 310 = 10100002.

12



bit slicing, methods

Method 1

b = v//2n mod 2.

If the result of v//2n is odd, b = 1, if it is
even, b = 0.

Method 2

b = [v&(1≪ n)] > 0.

(1≪ n) in binary is a 1 followed by n zeros.
Therefore will a bitwise and operation on
some number be 0 unless it has a bit value
of 1 at position n.

Table 1: Example with v = 23410 = 111010102

Method 1 Method 2
n v//2n b v&(1≪ n) b

7 1 1 128 1
6 3 1 64 1
5 7 1 32 1
4 14 0 0 0
3 29 1 8 1
2 58 0 0 0
1 117 1 2 1
0 234 0 0 0

13
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bit slicing in images: example

(a) n = 7 (b) n = 6 (c) n = 5 (d) n = 4

(e) n = 3 (f ) n = 2 (g) n = 1 (h) n = 0
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repetition: natural binary coding

∙ Every codeword is of equal length.
∙ The code of each symbol is the binary representation of the symbol’s (zero indiced)
index.

∙ Example: A 3-bits natural code has 8 possible values.

Symbol a b c d e f g h
Index 0 1 2 3 4 5 6 7
Codeword 000 001 010 011 100 101 110 111
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gray code

∙ An alternative binary representation (or coding).

∙ Close numbers need not have many bit values in common, e.g. 12710 = 011111112
and 12810 = 10000000.

∙ Since neighbouring pixels often have similar values, this means that natural binary
coded images often have high bit-plane complexity.

∙ Sometimes, e.g. in run-length coding, this is not desired.
∙ In Gray code, only one bit value is changed between adjacent integer values.
∙ The codewords in natural binary coding and Gray code are of equal length, the only
difference is what codeword is assigned to what value.
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binary representation transform: natural to gray code

Algorithm 3 Natural to Gray coding transform
procedure NatToGray(n) ▷ n list of naturally coded bits

g ← [] ▷ Initialize Gray list to empty
c← false ▷ Boolean that decides whether to complement or not
for b ∈ n do

if c then
g ← [1− b] ▷ Append to g

else
g ← [b]

end if
if b == 1 then

c← true
else

c← false
end if

end for
return g

end procedure
17



binary representation transform: gray to natural code

Algorithm 4 Gray to Natural coding transform
procedure GrayToNat(g) ▷ g list of Gray coded bits

n← [] ▷ Initialize natural list to empty
c← false ▷ Boolean that decides whether to complement or not
for b ∈ g do

if c then
n← [1− b] ▷ Append to g

else
n← [b]

end if
if b == 1 then

c← ¬c ▷ Switch value of c
end if

end for
return n

end procedure
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gray code example

Decimal Gray code Natural code

0 0000 0000
1 0001 0001
2 0011 0010
3 0010 0011
4 0110 0100
5 0111 0101
6 0101 0110
7 0100 0111
8 1100 1000
9 1101 1001

10 1111 1010
11 1110 1011
12 1010 1100
13 1011 1101
14 1001 1110
15 1000 1111

19



bit planes in natural binary codes and gray codes

∙ The figures below show bit planes from the MSB (left) to LSB (right).
∙ The MSB is always equal in the two representations.
∙ The Gray code representation has typically fewer ”noise planes”, which implies that
run-length transforms can compress more.

Figure 5: Natural binary representation

Figure 6: Gray code representation
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lempel-ziv-welch coding

∙ A member of the LZ* family of compression schemes.
∙ Utilizes patterns in the message by looking at symbol occurances, and therefore
mostly reduces inter sample redundancy.

∙ Maps one symbol sequence to one code.

∙ Based on a dictionary between symbol sequence and code that is built on the fly.
∙ This is done both in encoding and decoding.
∙ The dictionary is not stored or transmitted.

∙ The dictionary is initialized with an alphabeth of symbols of length one.
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lempel-ziv-welch: encoding

Given a message W that is to be encoded, the encoding is as follows.

1. Initialize the dictionary from an alphabeth, e.g. D = {# : 0, a : 1, b : 2, . . .} (where #
is an end-of-message symbol).

2. Initialize the current input w, to be the first symbol in W .
3. Find the longest string d ∈ D that matches the current input w.
4. Output (or send) the codeword of d, D[d].
5. Create a new string and append it to D, this new string is created as the current

string d concatenated with the next symbol in the input message W .
6. This new dictionary entry will get the next codeword not in use.
7. Set current symbol w to be the next string in W that is also in D.
8. Unless w = #, go to 3.
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lzw encoding example

∙ Message: ababcbababaaaaabab#
∙ Initial dictionary: { #:0, a:1, b:2, c:3 }
∙ New dictionary entry: current string plus next unseen symbol

Current New dict
Message string Codeword entry

ababcbababaaaaabab# a 1 ab:4
ababcbababaaaaabab# b 2 ba:5
ababcbababaaaaabab# ab 4 abc:6
ababcbababaaaaabab# c 3 cb:7
ababcbababaaaaabab# ba 5 bab:8
ababcbababaaaaabab# bab 8 baba:9
ababcbababaaaaabab# a 1 aa:10
ababcbababaaaaabab# aa 10 aaa:11
ababcbababaaaaabab# aa 10 aab:12
ababcbababaaaaabab# bab 8 bab#:13
ababcbababaaaaabab# # 0

∙ Encoded message: 1,2,4,3,5,8,1,10,10,8,0.
∙ Assuming original bps = 8, and coded bps = 4, we achieve a compression rate of

cr =
8 · 19
4 · 11

≈ 3.5 (2)
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lempel-ziv-welch: decoding

∙ Decode the encoded string codeword by codeword.

∙ Build the dictionary by decoding the current codeword and concatenate this
encoded string with:

∙ If the next codeword can be decoded (it is already in the dictionary): The first character
of the next decoded string.

∙ If the next codeword is not in the dictionary: The first character of the current decoded
string1.

∙ Processing one codeword at the time, and building the dictionary at the same time,
will in the end decode the whole sequence of codewords.

1See next page
24



lempel-ziv-welch: decoding

∙ Decode the encoded string codeword by codeword.
∙ Build the dictionary by decoding the current codeword and concatenate this
encoded string with:

∙ If the next codeword can be decoded (it is already in the dictionary): The first character
of the next decoded string.

∙ If the next codeword is not in the dictionary: The first character of the current decoded
string1.

∙ Processing one codeword at the time, and building the dictionary at the same time,
will in the end decode the whole sequence of codewords.

1See next page
24



lempel-ziv-welch: decoding

∙ Decode the encoded string codeword by codeword.
∙ Build the dictionary by decoding the current codeword and concatenate this
encoded string with:

∙ If the next codeword can be decoded (it is already in the dictionary): The first character
of the next decoded string.

∙ If the next codeword is not in the dictionary: The first character of the current decoded
string1.

∙ Processing one codeword at the time, and building the dictionary at the same time,
will in the end decode the whole sequence of codewords.

1See next page
24



lempel-ziv-welch: decoding, extra note

This explains why it makes sense to attach the first symbol of the current decoded string
to the end of the new dictionary entry.

∙ Let the currently decoded string be X with first symbol x.

∙ The new dictionary entry is X? : n, where n is the codeword.
∙ We look for n in our dictionary, but see that it is not there. We know that ? should be
the first symbol y of the decoded string Y at n, but how do we know what it is?

∙ The first thing to realise is that this only happens if Y was encountered immediately
after the creation of Y : n in the encoding.

∙ Therefore X? = Y , and therefore, y = x, where x was the first symbol of the string X .
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lzw decoding example

∙ Encoded message: 1,2,4,3,5,8,1,10,10,8,0
∙ Initial dictionary: { #:0, a:1, b:2, c:3 }
∙ New dictionary entry: current string plus first symbol in next string

Current New dict entry
Message string Final Proposal

1,2,4,3,5,8,1,10,10,8,0 a a?:4
1,2,4,3,5,8,1,10,10,8,0 b ab:4 b?:5
1,2,4,3,5,8,1,10,10,8,0 ab ba:5 ab?:6
1,2,4,3,5,8,1,10,10,8,0 c abc:6 c?:7
1,2,4,3,5,8,1,10,10,8,0 ba cb:7 ba?:8
1,2,4,3,5,8,1,10,10,8,0 bab bab:8 bab?:9
1,2,4,3,5,8,1,10,10,8,0 a baba:9 a?:10
1,2,4,3,5,8,1,10,10,8,0 aa aa:10 aa?:11
1,2,4,3,5,8,1,10,10,8,0 aa aaa:11 aa?:12
1,2,4,3,5,8,1,10,10,8,0 bab aab:12 bab?:13
1,2,4,3,5,8,1,10,10,8,0 # bab#:13

Decoded message: ababcbababaaaaaabab#
26



lzw compression, summary

∙ The LZW codes are normally coded with a natural binary coding.

∙ Typical text files are usually compressed with a factor of about 2.
∙ LZW coding is used a lot

∙ In the Unix utility compress from 1984.
∙ In the GIF image format.
∙ An option in the TIFF and PDF format.

∙ Experienced a lot of negative attention because of (now expired) patents. The PNG
format was created in 1995 to get around this.

∙ The LZW can be coded further (e.g. with Huffman codes).
∙ Not all created codewords are used.
∙ We can limit the number of generated codewords.

∙ Setting a limit on the number of codewords, and deleting old or seldomly used
codewords.

∙ Both the encoder and decoder need to have the same rules for deleting.
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lossy compression

∙ In order to achieve high compression rates, it is often necessary with lossy
compression.

∙ Note: in this case, the original signal can not be recovered because of loss of
information.

∙ Some simple methods for lossy compression:
∙ Requantizing to fewer graylevel intensities.
∙ Resampling to lower spatial resolution.
∙ Filter based methods, e.g. replacing the values in every non-overlapping p× q rectangle
in an image with the mean or median value of that region.
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how good is the image quality

∙ If we use lossy compression, we need to make sure that the result after
decompression is good enough.

∙ For an m× n image f , let g be the resulting image after f has been compressed and
decompressed. The error is then the difference

e(x, y) = f(x, y)− g(x, y).

∙ The root mean square (RMS) error between the images is

RMS =

√√√√ 1

mn

m∑
x=1

n∑
y=1

e2(x, y)

∙ If we interpret the error as noise, we can define the mean squared signal to noise
ratio (RMSMS) as

SNRMS =

∑m
x=1

∑n
y=1 g

2(x, y)∑m
x=1

∑n
y=1 e

2(x, y)
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how good is the image quality, cont.

∙ The RMS value of the SNR is then

SNRRMS =

√∑m
x=1

∑n
y=1 g

2(x, y)∑m
x=1

∑n
y=1 e

2(x, y)

∙ The quality measures above considers all errors in the whole image, and treat them
equally.

∙ Our perception does not necessary agree. E.g. small errors over the whole image will
get a larger SNRMS than missing or created features. But we will percieve the latter
having inferior quality.

∙ Often, our desire is that the image quality shall mirror our perception of the quality
of the image.

∙ This is especially true for image display purposes.
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how good is the image quality, cont.

∙ An image quality measure that is well aligned with our perception is typically based
on several parameter

∙ Each parameter should try to indicate how bad a certain compression error trait is.
∙ The final image quality measure should be one value that is based on all parameters.

∙ Errors around edges is perceived as bad.
∙ Errors in the foreground are perceived worse than errors in the background.
∙ Missing or created structures are also bad.
∙ The level of compression should probably vary locally in the image.

∙ Homogeneous areas should be compressed heavily. These areas carry little information,
and few non-zero coefficients in the 2D DFT.

∙ Edges, lines and other details should be compressed less. These carry more information,
and have more non-zero 2D DFT coefficients.
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∙ The final image quality measure should be one value that is based on all parameters.

∙ Errors around edges is perceived as bad.

∙ Errors in the foreground are perceived worse than errors in the background.
∙ Missing or created structures are also bad.
∙ The level of compression should probably vary locally in the image.

∙ Homogeneous areas should be compressed heavily. These areas carry little information,
and few non-zero coefficients in the 2D DFT.

∙ Edges, lines and other details should be compressed less. These carry more information,
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the jpeg standard

∙ JPEG (Joint Photographic Expert Group) is one of the most common compression
methods.

∙ The JPEG-standard (originally from 1992) has both lossy and lossless variants.
∙ In both cases, either Huffman- or arithmetic coding is used.
∙ In the lossless version, predicative coding is used.
∙ In the lossy version, a 2D discrete cosinus transform (DCT) is used.
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lossy jpeg compression: start

∙ Each image channel is partitioned into blocks of 8× 8 piksels, and each block can be
coded separately.

∙ For an image with 2b intensity values, subtract 2b−1 to center the image values
around 0 (if the image is originally in an unsigned format).

∙ Each block undergoes a 2D DCT. With this, most of the information in the 64 pixels is
located in a small area in the Fourier space.

Figure 7: Example block, subtraction by 128, and 2D DCT.
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2d discrete cosinus-transform

The main ingredient of the JPEG-compression is the 2D discrete cosinus transform (2D
DCT). For an m× n image f , the 2D DCT is

F (u, v) =
2√
mn

c(u)c(v)

m∑
x=0

n∑
y=0

f(x, y) cos
(
(2x+ 1)uπ

2m

)
cos

(
(2y + 1)vπ

2n

)
, (3)

c(a) =

 1√
2

if a = 0,

1 otherwise.
(4)

∙ JPEG only transforms 8× 8 tiles at a time.
∙ Compute 8× 8 (from u, v) tiles of size 8× 8 (from x, y), of
the cosine factor

∙ Compute 2D DCT coefficients by summing the
dot-products of the 8× 8 block in the image and every
8× 8 tile in the cosine image.
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why dct and not dft?

For a discrete signal with n points will the implicit n-point periodicity of a DFT introduce
high frequencies because of boundary-discontinuity. In JPEG, n = 8 and 2D, and the
boundary is the boundary of the blocks, but the point still stands.

∙ If we remove these frequencies we introduce heavy block-artifacts.
∙ If we keep them, we reduce the compression rate compared to DCT, where we often
don’t need to keep most high frequencies.

DCT is implicitly 2n-point periodically and symmetric about n, therefore will these hight
frequencies not be introduced.
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lossy jpeg compression: loss of information

∙ Each of the frequency-domain blocks are then point-divided by a quantization
matrix.

∙ The result is rounded off to the nearest integer.
∙ his is where we lose information, but also why we are able to achieve high
compression rates.

∙ This result is compressed by a coding method, before it is stored or transmitted.
∙ The DC and AC components are treated differently.

Figure 8: Divide the DCT block (left) with the quantization matrix (middle) and round to nearest integer (right)
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lossy jpeg compression: ac-components (sequential modes)

1. The AC-components are zig-zag scanned:
∙ The elements are ordered in a 1D sequence.
∙ The absolute value of the elements will mostly
decsend through the sequence.

∙ Many of the elements are zero, especially at the
end of the sequence.

2. A zero-based run-length transform is performed
on the sequence.

3. The run-length tuples are coded by Huffman or
arithmetic coding.

∙ The run-length tuple is here (number of 0’s,
number of bits in ”non-0”).

∙ Arithmetic coding often gives 5− 10% better
compression.

Figure 9: Zig-zag gathering of AC-components into a sequence.
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lossy jpeg compression: dc-component

1. The DC-components are gathered from all the blocks in all the image channels.

2. These are correlated, and are therefore difference-transformed.
3. The differences are coded by Huffman coding or arithmetic coding.

∙ More precise: The number of bits in each difference is entropy coded.
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lossy jpeg decompression: reconstruction of frequency-domain blocks

∙ The coding part (Huffman- and arithmetic coding) is reversible, and gives the AC
run-length tuples and the DC differences.

∙ The run-length transform and the difference transform are also reversible, and gives
the scaled and quantized 2D DCT coefficients

∙ The zig-zag transform is also reversible, and gives (together with the restored DC
component) an integer matrix.

∙ This matrix is multiplied with the quantization matrix in order to restore the sparse
frequency-domain block.

Figure 10: Multiply the quantized DCT components (left) with the quantization matrix (middle) to produce the sparse frequency-domain block (right).
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lossy jpeg decompression: quality of restored dct image

Figure 11: Comparison of the original 2D DCT components (left) and the restored (right)

∙ The restored DCT image is not equal to the original.

∙ But the major features are preserved
∙ Numbers with large absolute value in the top left corner.
∙ The components that was near zero in the original, are exactly zero in the restored
version.
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lossy jpeg decompression: inverse 2d dct

∙ We do an inverse 2D DCT on the sparse DCT component matrix.

f(x, y) =
2√
mn

m∑
u=0

n∑
v=0

c(u)c(v)F (u, v) cos
(
(2x+ 1)uπ

2m

)
cos

(
(2y + 1)vπ

2n

)
, (5)

where

c(a) =

 1√
2

if a = 0,

1 otherwise.
(6)

∙ We have then a restored image block which should be approximately equal to the
original image block.

Figure 12: A 2D inverse DCT on the sparse DCT component matrix (left) produces an approximate image block (right)
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lossy jpeg decompression: approximation error

Figure 13: The difference (right) between the original block (left) and the result from the JPEG compression and decompression (middle).

∙ The differences between the original block and the restored are small.

∙ But they are, however, not zero.
∙ The error is different on neighbouring pixels.
∙ This is especially true if the neighbouring pixels belong to different blocks.
∙ The JPEG compression/decompression can therefore introduce block artifacts, which
are block patterns in the reconstructed image (due to these different errors).
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reconstruction error in grayscale images

∙ JPEG compression can produce block-artifacts, smoothings and ring-effects.
∙ This is dependent on the quantization matrix, which determines how many
coefficients are kept, and how precisely they are preserved.

(a) Smoothing- and ring-effects (b) Block artifacts
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block artifacts and compression rate

(a) Compressed (b) Difference (c) Detail

(d) Compressed (e) Difference (f ) Detail

Figure 15: Top row: compression rate = 12.5. Bottom row: compression rate = 32.7 45



scaling of quantization matrix

∙ Lossy JPEG
compression use the
quantization matrix to
determine what
information to keep.

∙ The scaling factor q,
of the matrix
determines the
compression rate cr .

Figure 16: Quantization matrix

Figure 17: Top row, from left: (q, cr) : [(1, 12), (2, 19), (4, 30)] Bottom row, from left:
(1, cr) : [(8, 49), (16, 85), (32, 182)]
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block sizes

∙ We can vary the block size.
∙ The compression rate and execution time increases with increaseng block size.

∙ Block artifacts decreases with increasing block size,
∙ but the ringing-effects increases.

Figure 18: Original image (left). Different block sizes (left to right): 2 × 2, 4 × 4, 8 × 8.
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lossy jpeg compression of color image

∙ Change color space (from RGB) in order to separate luminance from chrominance.
∙ This is more aligned to how we percieve a color image.
∙ Light intensity is more important to us than chromaticity.
∙ Can also produce lower complexity in each channel.

∙ (Normally) we downsample the chromaticity-channels. Typically with a factor 2 in
each channel.

∙ Each channel is partitioned into 8× 8 blocks, and each block is coded separately as
before.

∙ We may use different quantization matrices for the luminocity and chromaticity
channels.
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lossy jpeg decompression of color image

∙ Every decompressed 8× 8 block in each image channel is gathered in a matrix for
this channel.

∙ The image channels are gathered to create a color image.
∙ We change color space to RGB for display, or CMYK for printing.
∙ Even if the chromaticity channels have reduced resolution, the resolution in the RGB
space is full.

∙ We can get 8× 8 block artifacts in intensity.
∙ With 2 times downsampling in each direction in the chromaticity channels, we can get
16× 16 block artifacts in chroma (”colors”).
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reconstruction error in color images

(a) 1.5 - 2 bbp (b) 0.5 - 0.75 bbp (c) 0.25 - 0.5 bbp

Figure 19: Compression of 2f bit color images. Compression level measured in bits per pixel (bbp)
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jpeg2000 vs jpeg

∙ Original JPEG is from 1992, newer standard JPEG2000 is from 2000.
∙ Uses a discrete wavelet transform in stead of DCT.
∙ Uses more sophisticated coding algorithms.
∙ Higher compression and better perceptual qulity.
∙ No block artifacts, but ringing-effects are still present.
∙ More computationally demanding.
∙ Not widely supported, even after 17 years.

Figure 20: Original (left), JPEG (middle), and JPEG2000 (right)
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lossless jpeg compression: overview

∙ The lossless JPEG variant is using predictive coding.

∙ Generally, for an image f , predictive coding codes

e(x, y) = f(x, y)− g(x, y),

where g(x, y) is predicted using neighbouring values of (x, y).
∙ A linear predictor of order (m,n):

g(x, y) = round

 m∑
i=1

n∑
j=1

αijf(x− i, y − j)


∙ Equal-length coding requires an extra bit per pixel e(x, y).

∙ Or even more bits if the sum of the prediction-coefficients aij , exceeds 1.
∙ The solution is entropy-coding.
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lossless jpeg compression: detail

∙ In lossless JPEG compression, f(x, y) is predicted using up
to three previously processed elements.

∙ Z is the pixel we want to predict.
∙ Use some or all of the elements A,B,C .

∙ The prediction error is near zero, and is entropy coded
with either Huffman coding or arithmetic coding.

∙ The compression rate is dependent on
∙ Bits per pixel in the original image.
∙ The entropy in the prediction error.

∙ For normal color images, the compression rate is about 2.
∙ Is mostly only used in medical applications.

Figure 21: What elements used in predictive coding of
element Z . Blue is processed, pink is not.
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lossless coding of image sequences

For a sequence of images stacked as f(x, y, t), an m’th order prediction can be computed
as

g(x, y, t) = round
[

m∑
k=1

αkf(x, y, t− 1)

]
Motion detection and motion compensation is necessary inside so called macro blocks
(typically of shape 16× 16) to increase the compression rate.

∙ The difference entropy is low: H = 2.59.
∙ This gives an optimal compression rate (when
single-differences is coded) of cr = 8/2.59 = 3.

∙ Figure to the right
∙ Top row: Two frames from an orbiting space
shuttle video.

∙ Bottom row: Prediction error image using order 1
prediction (left), and a histogram of the
prediction error (right).
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digital video

∙ Compression of digital image sequences/video is usually based on predictive coding
with motion-compensation and 2D DCT.

∙ Newer standards use often prediciton based on both previous and future images in
the sequence.

∙ With 50-60 frames per second there is a lot to gain by prediction.
∙ ISO/IEC standards for video compression (through the Motion Picture Expert Group
(MPEG)): MPEG-1 (1992), MPEG-2 (1994), MPEG-4 (1998), MPEG-H (2013).

∙ ITU-T have also standards for video compression (throught the Visual Coding Experts
Group (VCEG): H.120 (1984), H.26x-family (H.265 (2013) = MPEG-H part 2)
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summary

∙ The purpose of compression is to represent ”the same” information more compactly
by reducing or removing redundancy.

∙ Compression is based on information theory.
∙ The number of bits per symbol is central, and varies with the compression method
and input message.

∙ Central algorithms:
∙ Run-length transform
∙ LZW transform
∙ 2D DCT
∙ Predictive coding
∙ Difference transform
∙ Huffman coding
∙ Arithmetic coding
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Questions?
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