COMPRESSION AND CODING 11

Ole-Johan Skrede

03.05.2017

INF2310 - Digital Image Processing

Department of Informatics

The Faculty of Mathematics and Natural Sciences

University of Oslo

After original slides by Andreas Kleppe

TODAY'S LECTURE

- Difference transform

TODAY'S LECTURE

- Difference transform

- Run-length transform

TODAY'S LECTURE

- Difference transform
- Run-length transform
- LZW-compression

TODAY'S LECTURE

- Difference transform
- Run-length transform
- LZW-compression

- JPEG compression

TODAY'S LECTURE

- Difference transform
- Run-length transform
- LZW-compression

- JPEG compression

- Lossless predictive coding

TODAY'S LECTURE

- Difference transform

- Run-length transform

- LZW-compression

- JPEG compression

- Lossless predictive coding

- Sections from the compendium:

- 18.4 Noen transformer som brukes i kompresjon
- 18.73 Lempel-Ziv-Welch (LZW) algoritmen

- 18.8.0 Koding med informasjonstap

- 18.81 JPEG

INTRODUCTION AND REPETITION

REPETITION: COMPRESSION

Original data Transformation —> Quantization —> Coding Compressed data
—> —>

|]

Figure 1: Three steps of compression. Green arrows: lossless, red arrows: lossy

- We can group compression in to three steps:
- Transformation: A more compact image representation.
- Qunatization: Representation approximation.
- Coding: Transformation from one set of symbols to another.

REPETITION: COMPRESSION

Original data Transformation —> Quantization —> Coding Compressed data
—> —>

|]

Figure 1: Three steps of compression. Green arrows: lossless, red arrows: lossy

- We can group compression in to three steps:
- Transformation: A more compact image representation.
- Qunatization: Representation approximation.
- Coding: Transformation from one set of symbols to another.
- Compression can either be lossless or lossy.
- Lossless: We are able to perfectly reconstruct the original image.
- Lossy: We can only reconstruct the original image to a certain degree (but not perfect).

- There exists a number of methods for both types.

REPETITION: DIFFERENT TYPES OF REDUNDANCIES

- Psychovisual redundancy

- Information that we cannot percieve.
- Can be compressed by e.g. subsampling or by reducing the number of bits per pixel.

REPETITION: DIFFERENT TYPES OF REDUNDANCIES

- Psychovisual redundancy

- Information that we cannot percieve.

- Can be compressed by e.g. subsampling or by reducing the number of bits per pixel.
- Inter-pixel temporal redundancy

- Correlation between successive images in a sequence.
- A sequence can be compressed by only storing some frames, and then only differences
for the rest of the sequence.

REPETITION: DIFFERENT TYPES OF REDUNDANCIES

- Psychovisual redundancy

- Information that we cannot percieve.

- Can be compressed by e.g. subsampling or by reducing the number of bits per pixel.
- Inter-pixel temporal redundancy

- Correlation between successive images in a sequence.
- A sequence can be compressed by only storing some frames, and then only differences
for the rest of the sequence.

- Inter-pixel spatial redundancy

- Correlation between neighbouring pixels within an image.
- Can be compressed by e.g. run-length methods.

REPETITION: DIFFERENT TYPES OF REDUNDANCIES

- Psychovisual redundancy

- Information that we cannot percieve.

- Can be compressed by e.g. subsampling or by reducing the number of bits per pixel.
- Inter-pixel temporal redundancy

- Correlation between successive images in a sequence.
- A sequence can be compressed by only storing some frames, and then only differences
for the rest of the sequence.

- Inter-pixel spatial redundancy
- Correlation between neighbouring pixels within an image.
- Can be compressed by e.g. run-length methods.

- Coding redundancy

- Information is not represented optimally by the symbols in the code.
- This is often measured as the difference between average code length and some
theoretical minimum code length.

COMPRESSION METHODS AND REDUNDANCY

Types of redundance — Psycho- | Inter-pixel | Inter-pixel
visual temporal | spatial Coding

Shannon-Fano coding v

Huffman coding v

Arithmetic coding v

Lossless predicative coding in time v

Lossless JPEG v v

Lossy JPEG v v v

Defference transform v

Run-length transform v

LZW transform v v

SOME TRANSFORMS

DIFFERENCE TRANSFORM

- Horizontal pixels have often quite similar intensity values.

DIFFERENCE TRANSFORM

- Horizontal pixels have often quite similar intensity values.

- Transform each pixelvalue f(x,y) as the difference
between the pixel at (z,y) and (x,y — 1).

- That is, for an m x n image f, let g[x,0] = f[x,0], and
glz,y] = fle,y) - flo,y =1, ye{l,2,...,n—1} (1)

forall rows z € {0,1,...,m —1}.

DIFFERENCE TRANSFORM

- Horizontal pixels have often quite similar intensity values.

- Transform each pixelvalue f(x,y) as the difference
between the pixel at (z,y) and (x,y — 1).

- That is, for an m x n image f, let g[x,0] = f[x,0], and

g[x,y]zf[x,y]—f[x,y—l], y6{152="'vn_1} (1)

forall rows z € {0,1,...,m —1}.

- Note that for an image f taking values in [0,2° — 1], values
of the transformed image ¢ take values in
[—(2° —1),2° —1].

DIFFERENCE TRANSFORM

- Horizontal pixels have often quite similar intensity values.

- Transform each pixelvalue f(x,y) as the difference
between the pixel at (z,y) and (x,y — 1).

- That is, for an m x n image f, let g[x,0] = f[x,0], and

g[x,y]zf[x,y]—f[x,y—l], y6{152="'vn_1} (1)

forall rows z € {0,1,...,m —1}.

- Note that for an image f taking values in [0,2° — 1], values
of the transformed image ¢ take values in
[—(2° —1),2° —1].

- This means that we need to use b + 1 bits for each g(x, y)
if we are going to use equal-size codeword for every value.

DIFFERENCE TRANSFORM

- Horizontal pixels have often quite similar intensity values.

- Transform each pixelvalue f(x,y) as the difference
between the pixel at (z,y) and (z,y — 1).

- That is, for an m x n image f, let g[x,0] = f[x,0], and

(a) Original (b) Graylevel intensity histogram

g[xvy]:f[xay]_f[xvy_l]v y6{1,2,...,n—1} (1)

Figure2: H =~ 7.45 =—> cp =~ 1.1

forall rows z € {0,1,...,m —1}.

- Note that for an image f taking values in [0,2° — 1], values
of the transformed image ¢ take values in
[—(2° —1),2° —1]. . }

- This means that we need to use b + 1 bits for each g(x, y) e s

if we are going to use equal-size codeword for every value. | wansiormed (o) Graytevel intensity histogram

- Often, the differences are close to 0, which means that
natural binary coding of the differences are not optimal.

Figure3: H ~ 5.07 —> cr =~ 1.6

DIFFERENCE TRANSFORM: FORWARD

Algorithm 1 Forward difference transform

procedure FORWARDDIFF(f) > f is an image of shape m x n
g+ 0 > Difference image with same shape as f
forr €{0,1,...,m} do

glr, 0] < f[r,0]

force {1,2,...,n—1} do
glr,dl flr,d = flr,e 1]
end for
end for
return g
end procedure

DIFFERENCE TRANSFORM: BACKWARD

Algorithm 2 Backward difference transform

procedure BACKWARDDIFF(g) > g is an image of shape m x n
h+ 0 > Image with same shape as g
forr €{0,1,...,m} do

h[r,0] < g[r,0]

force {1,2,...,n—1} do
hlr, c] < g[r,c] + h[r,c — 1]
end for
end for
return h
end procedure

RUN-LENGTH TRANSFORM

- Often, images contain objects with similar intensity values.

RUN-LENGTH TRANSFORM

- Often, images contain objects with similar intensity values.
- Run-length transform use neighbouring pixels with the same value.

- Note: This requires equality, not only similarity.
- Run-length transform is compressing more with decreasing complexity.

RUN-LENGTH TRANSFORM

- Often, images contain objects with similar intensity values.
- Run-length transform use neighbouring pixels with the same value.
- Note: This requires equality, not only similarity.
- Run-length transform is compressing more with decreasing complexity.

- The run-length transform is reversible.

RUN-LENGTH TRANSFORM

- Often, images contain objects with similar intensity values.
- Run-length transform use neighbouring pixels with the same value.
- Note: This requires equality, not only similarity.
- Run-length transform is compressing more with decreasing complexity.

- The run-length transform is reversible.

- Codes sequences of values into sequences of tuples: (value, run-length).

RUN-LENGTH TRANSFORM

- Often, images contain objects with similar intensity values.
- Run-length transform use neighbouring pixels with the same value.
- Note: This requires equality, not only similarity.
- Run-length transform is compressing more with decreasing complexity.
- The run-length transform is reversible.
- Codes sequences of values into sequences of tuples: (value, run-length).
- Example:

- Values (24 numbers): 3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,4,4,7,7,7,7,7, 7.
- Code (8 numbers): (3,6), (5,10), (4,2), (7,6).

- The coding determines how many bits we use to store the tuples.

RUN-LENGTH TRANSFORM IN BINARY IMAGES

- In a binary image, we can ommit the value in coding. As long as we know what value
is coded first, the rest have to be alternating values.
- 0,0,0,0,0,1,1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,1,1,1,1
©5,6,2,3,5,4

- The histogram of the run-lengths is often not flat, entropy-coding should therefore
be used to code the run-length sequence.

BIT SLICING

- Bit slicing is extracting the value of a bit at a certain position.

BIT SLICING

- Bit slicing is extracting the value of a bit at a certain position.

- We will look at two different ways of doing this.

BIT SLICING

- Bit slicing is extracting the value of a bit at a certain position.

- We will look at two different ways of doing this.

- Let v be the value we want to extract bit values from, and n denote the bit position,
starting from n = 0 at the least significant bit (LSB) to the most significant bit (MSB).

BIT SLICING

- Bit slicing is extracting the value of a bit at a certain position.

- We will look at two different ways of doing this.

- Let v be the value we want to extract bit values from, and n denote the bit position,
starting from n = 0 at the least significant bit (LSB) to the most significant bit (MSB).

- As an example, 1019 = 10105 has values [1,0,1,0] at n = [3,2,1,0].

- Let b be the bit value at position n in v.

- Let us use python-syntax for bitwise operators:

- &: Bitwise and: 11002410102 = 1000, therefore 12190& 10109 = 8.
- //: Integer division: 23//4 = 5 since 23/4 =5+ 3/4.
- & Left bit-shift: 1010 < 310 = 8010 Since 10102 < 310 = 10100002.

BIT SLICING, METHODS

Method 1
b=v//2" mod 2.

If the result of v//2™ is odd, b= 1, if itis
even, b = 0.

BIT SLICING, METHODS

Method 1
b=v//2" mod 2.

If the result of v//2™ is odd, b =1, if itis
even, b = 0.
Method 2

b= [v&(l < n)] > 0.

(1 < n)inbinaryis a1 followed by n zeros.
Therefore will a bitwise and operation on
some number be 0 unless it has a bit value
of 1 at position n.

BIT SLICING, METHODS

Method 1 Table 1: Example with v = 2347 = 111010104
b=v//2" mod 2. Method 1 Method 2
_ o n|v//2" b|v&(l<n) b
If the result of v//2™ is odd, b =1, if itis
even, b = 0. 7 1 1 128 1
Method 2 6 301 64 1
5 7 1 32 1
b= [v&(l < n)] > 0. 4 14 0 0 0
- 3 29 1 8 1
(1 < n)inbinaryis a1 followed by n zeros. 5 58 0 0 0
Therefore will a bitwise anq operathn on 1 117 1 2 1
some num.b.er be 0 unless it has a bit value 0 234 0 0 0
of 1 at position n.

BIT SLICING IN IMAGES: EXAMPLE

@n=1

REPETITION: NATURAL BINARY CODING

- Every codeword is of equal length.

- The code of each symbol is the binary representation of the symbol’s (zero indiced)
index.

REPETITION: NATURAL BINARY CODING

- Every codeword is of equal length.

- The code of each symbol is the binary representation of the symbol’s (zero indiced)
index.

- Example: A 3-bits natural code has 8 possible values.

Symbol a b C d e f g h
Index 0 1 2 3 4 5 6 7
Codeword 000 001 010 011 100 101 110 111

GRAY CODE

- An alternative binary representation (or coding).

GRAY CODE

- An alternative binary representation (or coding).

- Close numbers need not have many bit values in common, e.g. 1275 = 011111115
and 1289 = 10000000.

GRAY CODE

- An alternative binary representation (or coding).

- Close numbers need not have many bit values in common, e.g. 1275 = 011111115
and 1289 = 10000000.

- Since neighbouring pixels often have similar values, this means that natural binary
coded images often have high bit-plane complexity.

GRAY CODE

- An alternative binary representation (or coding).

- Close numbers need not have many bit values in common, e.g. 1275 = 011111115
and 1289 = 10000000.

- Since neighbouring pixels often have similar values, this means that natural binary
coded images often have high bit-plane complexity.

- Sometimes, e.g. in run-length coding, this is not desired.

GRAY CODE

- An alternative binary representation (or coding).

- Close numbers need not have many bit values in common, e.g. 1275 = 011111115
and 1289 = 10000000.

- Since neighbouring pixels often have similar values, this means that natural binary
coded images often have high bit-plane complexity.

- Sometimes, e.g. in run-length coding, this is not desired.

- In Gray code, only one bit value is changed between adjacent integer values.

GRAY CODE

- An alternative binary representation (or coding).

- Close numbers need not have many bit values in common, e.g. 1275 = 011111115
and 1289 = 10000000.

- Since neighbouring pixels often have similar values, this means that natural binary
coded images often have high bit-plane complexity.

- Sometimes, e.g. in run-length coding, this is not desired.
- In Gray code, only one bit value is changed between adjacent integer values.

- The codewords in natural binary coding and Gray code are of equal length, the only
difference is what codeword is assigned to what value.

BINARY REPRESENTATION TRANSFORM: NATURAL TO GRAY CODE

Algorithm 3 Natural to Gray coding transform

procedure NATTOGRAY(n) > n list of naturally coded bits
g <] > Initialize Gray list to empty
c + false > Boolean that decides whether to complement or not
forb € ndo
if c then
g+« [1-10] > Append to g
else
g < [b]
end if
if b == 1 then
c+ true
else
c+ false
end if
end for
return g
end procedure

BINARY REPRESENTATION TRANSFORM: GRAY TO NATURAL CODE

Algorithm 4 Gray to Natural coding transform

procedure GRAYTONAT(g) > g list of Gray coded bits
n <+ | > Initialize natural list to empty
c+ false > Boolean that decides whether to complement or not
forb e gdo
if c then
n < [1—1] > Append to g
else
n < [b]
end if
if b == 1 then
c+ ¢ > Switch value of ¢
end if
end for
return n

end procedure

GRAY CODE EXAMPLE

Decimal Gray code Natural code

0 0000 0000
1 0001 0001
2 0011 0010
3 0010 0011
4 0110 0100
5 0111 0101
6 0101 0110
7 0100 0111
8 1100 1000
9 1101 1001
10 1111 1010
11 1110 1011
12 1010 1100
13 1011 1101
14 1001 1110
15 1000 1111

BIT PLANES IN NATURAL BINARY CODES AND GRAY CODES

- The figures below show bit planes from the MSB (left) to LSB (right).

- The MSB is always equal in the two representations.

- The Gray code representation has typically fewer "noise planes”, which implies that
run-length transforms can compress more.

Figure 6: Gray code representation

20

LEMPEL-ZIV-WELCH CODING

- A member of the LZ* family of compression schemes.

- Utilizes patterns in the message by looking at symbol occurances, and therefore
mostly reduces inter sample redundancy.

- Maps one symbol sequence to one code.

LEMPEL-ZIV-WELCH CODING

- A member of the LZ* family of compression schemes.

- Utilizes patterns in the message by looking at symbol occurances, and therefore
mostly reduces inter sample redundancy.

- Maps one symbol sequence to one code.

- Based on a dictionary between symbol sequence and code that is built on the fly.

- This is done both in encoding and decoding.
- The dictionary is not stored or transmitted.

LEMPEL-ZIV-WELCH CODING

- A member of the LZ* family of compression schemes.

- Utilizes patterns in the message by looking at symbol occurances, and therefore
mostly reduces inter sample redundancy.

- Maps one symbol sequence to one code.

- Based on a dictionary between symbol sequence and code that is built on the fly.
- This is done both in encoding and decoding.
- The dictionary is not stored or transmitted.

- The dictionary is initialized with an alphabeth of symbols of length one.

LEMPEL-ZIV-WELCH: ENCODING

Given a message W that is to be encoded, the encoding is as follows.

1. Initialize the dictionary from an alphabeth, e.g. D = {# :0,a: 1,b:2,...} (where #
is an end-of-message symbol).

22

LEMPEL-ZIV-WELCH: ENCODING

Given a message W that is to be encoded, the encoding is as follows.

1. Initialize the dictionary from an alphabeth, e.g. D = {# :0,a: 1,b:2,...} (where #
is an end-of-message symbol).

2. Initialize the current input w, to be the first symbol in .

22

LEMPEL-ZIV-WELCH: ENCODING

Given a message W that is to be encoded, the encoding is as follows.

1. Initialize the dictionary from an alphabeth, e.g. D = {# :0,a: 1,b:2,...} (where #
is an end-of-message symbol).

2. Initialize the current input w, to be the first symbol in .
3. Find the longest string d € D that matches the current input w.

22

LEMPEL-ZIV-WELCH: ENCODING

Given a message W that is to be encoded, the encoding is as follows.

1. Initialize the dictionary from an alphabeth, e.g. D = {# :0,a: 1,b:2,...} (where #
is an end-of-message symbol).

2. Initialize the current input w, to be the first symbol in .

3. Find the longest string d € D that matches the current input w.

4. Output (or send) the codeword of d, D[d].

22

LEMPEL-ZIV-WELCH: ENCODING

Given a message W that is to be encoded, the encoding is as follows.
1. Initialize the dictionary from an alphabeth, e.g. D = {# :0,a: 1,b:2,...} (where #
is an end-of-message symbol).
Initialize the current input w, to be the first symbol in .
Find the longest string d € D that matches the current input w.
Output (or send) the codeword of d, D]d).

Create a new string and append it to D, this new string is created as the current
string d concatenated with the next symbol in the input message W.

Pl > W N

22

LEMPEL-ZIV-WELCH: ENCODING

Given a message W that is to be encoded, the encoding is as follows.

1.

Pl > W N

Initialize the dictionary from an alphabeth, e.g. D = {#:0,a:1,b:2,...} (Where #
is an end-of-message symbol).

Initialize the current input w, to be the first symbol in .
Find the longest string d € D that matches the current input w.
Output (or send) the codeword of d, D]d).

Create a new string and append it to D, this new string is created as the current
string d concatenated with the next symbol in the input message W.

This new dictionary entry will get the next codeword not in use.

22

LEMPEL-ZIV-WELCH: ENCODING

Given a message W that is to be encoded, the encoding is as follows.

1.

Pl > W N

on

Initialize the dictionary from an alphabeth, e.g. D = {#:0,a:1,b:2,...} (Where #
is an end-of-message symbol).

Initialize the current input w, to be the first symbol in .
Find the longest string d € D that matches the current input w.
Output (or send) the codeword of d, D]d).

Create a new string and append it to D, this new string is created as the current
string d concatenated with the next symbol in the input message W.

This new dictionary entry will get the next codeword not in use.

Set current symbol w to be the next string in W that is also in D.

22

LEMPEL-ZIV-WELCH: ENCODING

Given a message W that is to be encoded, the encoding is as follows.

1.

Pl > W N

on

Initialize the dictionary from an alphabeth, e.g. D = {#:0,a:1,b:2,...} (Where #
is an end-of-message symbol).

Initialize the current input w, to be the first symbol in .
Find the longest string d € D that matches the current input w.
Output (or send) the codeword of d, D]d).

Create a new string and append it to D, this new string is created as the current
string d concatenated with the next symbol in the input message W.

This new dictionary entry will get the next codeword not in use.
Set current symbol w to be the next string in W that is also in D.
Unless w = #, go to 3.

22

LZW ENCODING EXAMPLE

- Message: ababcbababaaaaabab#
- Initial dictionary: { #:0, a:1, b2, c3 }
- New dictionary entry: current string plus next unseen symbol

Current New dict
Message string Codeword entry
ababcbababaaaaabab# a 1 ab:4
ababcbababaaaaabab# b 2 ba:5
ababcbababaaaaabab# ab 4 abc:6
ababcbababaaaaabab# c 3 ch:7
ababcbababaaaaabab# ba 5 bab:8
ababcbababaaaaabab# bab 8 baba:9
ababcbababaaaaabab# a 1 aa:10
ababcbababaaaaabab# aa 10 aaa:1l
ababcbababaaaaabab# aa 10 aab:12
ababcbababaaaaabab# bab 8 bab#:13
ababcbababaaaaabab# # 0

- Encoded message: 1,2,4,3,5,8,1,10,10,8,0.
- Assuming original bps = 8, and coded bps = 4, we achieve a compression rate of

819
= —— 3.5 2
G=rm o @

23

LEMPEL-ZIV-WELCH: DECODING

- Decode the encoded string codeword by codeword.

TSee next page

24

LEMPEL-ZIV-WELCH: DECODING

- Decode the encoded string codeword by codeword.
- Build the dictionary by decoding the current codeword and concatenate this

encoded string with:
- If the next codeword can be decoded (it is already in the dictionary): The first character

of the next decoded string.
- If the next codeword is not in the dictionary: The first character of the current decoded

string’.

TSee next page
24

LEMPEL-ZIV-WELCH: DECODING

- Decode the encoded string codeword by codeword.
- Build the dictionary by decoding the current codeword and concatenate this
encoded string with:
- If the next codeword can be decoded (it is already in the dictionary): The first character

of the next decoded string.
- If the next codeword is not in the dictionary: The first character of the current decoded

string’.
- Processing one codeword at the time, and building the dictionary at the same time,
will in the end decode the whole sequence of codewords.

TSee next page
24

LEMPEL-ZIV-WELCH: DECODING, EXTRA NOTE

This explains why it makes sense to attach the first symbol of the current decoded string
to the end of the new dictionary entry.

- Let the currently decoded string be X with first symbol z.

25

LEMPEL-ZIV-WELCH: DECODING, EXTRA NOTE

This explains why it makes sense to attach the first symbol of the current decoded string
to the end of the new dictionary entry.

- Let the currently decoded string be X with first symbol z.
- The new dictionary entry is X? : n, where n is the codeword.

25

LEMPEL-ZIV-WELCH: DECODING, EXTRA NOTE

This explains why it makes sense to attach the first symbol of the current decoded string
to the end of the new dictionary entry.

- Let the currently decoded string be X with first symbol z.

- The new dictionary entry is X? : n, where n is the codeword.

- We look for n in our dictionary, but see that it is not there. We know that ? should be
the first symbol y of the decoded string Y at n, but how do we know what it is?

25

LEMPEL-ZIV-WELCH: DECODING, EXTRA NOTE

This explains why it makes sense to attach the first symbol of the current decoded string
to the end of the new dictionary entry.

- Let the currently decoded string be X with first symbol z.

- The new dictionary entry is X? : n, where n is the codeword.

- We look for n in our dictionary, but see that it is not there. We know that ? should be
the first symbol y of the decoded string Y at n, but how do we know what it is?

- The first thing to realise is that this only happens if Y was encountered immediately
after the creation of Y : n in the encoding.

25

LEMPEL-ZIV-WELCH: DECODING, EXTRA NOTE

This explains why it makes sense to attach the first symbol of the current decoded string
to the end of the new dictionary entry.

- Let the currently decoded string be X with first symbol z.

- The new dictionary entry is X? : n, where n is the codeword.

- We look for n in our dictionary, but see that it is not there. We know that ? should be
the first symbol y of the decoded string Y at n, but how do we know what it is?

- The first thing to realise is that this only happens if Y was encountered immediately
after the creation of Y : n in the encoding.
- Therefore X7 =Y, and therefore, y = x, where x was the first symbol of the string X.

25

LZW DECODING EXAMPLE

- Encoded message: 1,2,4,3,5,8,1,10,10,8,0
- Initial dictionary: { #:0, a:1, b2, c3 }
- New dictionary entry: current string plus first symbol in next string

Current New dict entry

Message string Final Proposal
1,2,4,3,5,8,1,10,10,8,0 a a”h
1,2,4,3,5,8,1,10,10,8,0 b ab:4 b?:5
1,2,4,3,5,8,1,10,10,8,0 ab ba:5 ab?:6
1,2,4,3,5,8,1,10,10,8,0 C abc:6 7
1,2,4,3,5,8,1,10,10,8,0 ba cb:7 ba?:8
1,2,4,3,5,8,1,10,10,8,0 bab bab:8 bab?:9
1,2,4,3,5,8,1,10,10,8,0 a baba:9 a?”10
1,2,4,3,5,8,1,10,10,8,0 aa aa:10 aa”11
1,2,4,3,5,8,1,10,10,8,0 aa aaa:ll aa”12
1,2,4,3,5,8,1,10,10,8,0 bab aabh:12 bab?13
1,2,4,3,5,8,1,10,10,8,0 # bab#:13

Decoded message: ababcbababaaaaaabab#

26

LZW COMPRESSION, SUMMARY

- The LZW codes are normally coded with a natural binary coding.

LZW COMPRESSION, SUMMARY

- The LZW codes are normally coded with a natural binary coding.
- Typical text files are usually compressed with a factor of about 2.

LZW COMPRESSION, SUMMARY

- The LZW codes are normally coded with a natural binary coding.

- Typical text files are usually compressed with a factor of about 2.
- LZW coding is used a lot

- In the Unix utility compress from 1984.
- In the GIF image format.
- An option in the TIFF and PDF format.

LZW COMPRESSION, SUMMARY

- The LZW codes are normally coded with a natural binary coding.
- Typical text files are usually compressed with a factor of about 2.
- LZW coding is used a lot
- In the Unix utility compress from 1984.
- In the GIF image format.
- An option in the TIFF and PDF format.
- Experienced a lot of negative attention because of (now expired) patents. The PNG
format was created in 1995 to get around this.

- The LZW can be coded further (e.g. with Huffman codes).

LZW COMPRESSION, SUMMARY

- The LZW codes are normally coded with a natural binary coding.
- Typical text files are usually compressed with a factor of about 2.
- LZW coding is used a lot

- In the Unix utility compress from 1984.

- In the GIF image format.
- An option in the TIFF and PDF format.

- Experienced a lot of negative attention because of (now expired) patents. The PNG
format was created in 1995 to get around this.

- The LZW can be coded further (e.g. with Huffman codes).

- Not all created codewords are used.

LZW COMPRESSION, SUMMARY

- The LZW codes are normally coded with a natural binary coding.
- Typical text files are usually compressed with a factor of about 2.
- LZW coding is used a lot
- In the Unix utility compress from 1984.
- In the GIF image format.
- An option in the TIFF and PDF format.
- Experienced a lot of negative attention because of (now expired) patents. The PNG
format was created in 1995 to get around this.
- The LZW can be coded further (e.g. with Huffman codes).
- Not all created codewords are used.
- We can limit the number of generated codewords.

- Setting a limit on the number of codewords, and deleting old or seldomly used
codewords.
- Both the encoder and decoder need to have the same rules for deleting.

LOSSY COMPRESSION

- In order to achieve high compression rates, it is often necessary with lossy
compression.

28

LOSSY COMPRESSION

- In order to achieve high compression rates, it is often necessary with lossy
compression.

- Note: in this case, the original signal can not be recovered because of loss of
information.

28

LOSSY COMPRESSION

- In order to achieve high compression rates, it is often necessary with lossy
compression.

- Note: in this case, the original signal can not be recovered because of loss of
information.

- Some simple methods for lossy compression:

- Requantizing to fewer graylevel intensities.

- Resampling to lower spatial resolution.

- Filter based methods, e.g. replacing the values in every non-overlapping p x g rectangle
in an image with the mean or median value of that region.

28

HOW GOOD IS THE IMAGE QUALITY

- If we use lossy compression, we need to make sure that the result after
decompression is good enough.

29

HOW GOOD IS THE IMAGE QUALITY

- If we use lossy compression, we need to make sure that the result after

decompression is good enough.
- Foran m x n image f, let g be the resulting image after f has been compressed and
decompressed. The error is then the difference

6(:L',y) - f(xay) - g(:L',y)‘

29

HOW GOOD IS THE IMAGE QUALITY

- If we use lossy compression, we need to make sure that the result after
decompression is good enough.

- Foran m x n image f, let g be the resulting image after f has been compressed and
decompressed. The error is then the difference

e(fl',y) - f(xay) - g(:L',y)‘

- The root mean square (RMS) error between the images is

m

RMS = %ZZPQ(T@/)

rz=1y=1
- If we interpret the error as noise, we can define the mean squared signal to noise

ratio (RM Syrs) as
Zm:l Zy:l gQ(x) y)

N =
SNBus = S S ()

29

HOW GOOD IS THE IMAGE QUALITY, CONT.

- The RM S value of the SNR is then

SNRR]L[S—\/Z;LILIZZJ & ()

y=1€>(2,7)

30

HOW GOOD IS THE IMAGE QUALITY, CONT.

- The RM S value of the SNR is then

SNRR]L[S—\/Z;LILIZZJ & ()

y=1€>(2,7)

- The quality measures above considers all errors in the whole image, and treat them
equally.

30

HOW GOOD IS THE IMAGE QUALITY, CONT.

- The RM S value of the SNR is then

SNRRMS—\/ZJ 123, 197 (2, y)

m y/) P2(T y)

- The quality measures above considers all errors in the whole image, and treat them
equally.

- Our perception does not necessary agree. E.g. small errors over the whole image will

get a larger SNR);s than missing or created features. But we will percieve the latter
having inferior quality.

30

HOW GOOD IS THE IMAGE QUALITY, CONT.

- The RM S value of the SNR is then

SNRRMS—\/ZJ 123, 197 (2, y)

m y/) P2(T y)

- The quality measures above considers all errors in the whole image, and treat them
equally.

- Our perception does not necessary agree. E.g. small errors over the whole image will
get a larger SNR);s than missing or created features. But we will percieve the latter
having inferior quality.

- Often, our desire is that the image quality shall mirror our perception of the quality
of the image.

- This is especially true for image display purposes.

30

HOW GOOD IS THE IMAGE QUALITY, CONT.

- An image quality measure that is well aligned with our perception is typically based
on several parameter
- Each parameter should try to indicate how bad a certain compression error trait is.
- The final image quality measure should be one value that is based on all parameters.

HOW GOOD IS THE IMAGE QUALITY, CONT.

- An image quality measure that is well aligned with our perception is typically based
on several parameter

- Each parameter should try to indicate how bad a certain compression error trait is.
- The final image quality measure should be one value that is based on all parameters.

- Errors around edges is perceived as bad.

HOW GOOD IS THE IMAGE QUALITY, CONT.

- An image quality measure that is well aligned with our perception is typically based
on several parameter

- Each parameter should try to indicate how bad a certain compression error trait is.
- The final image quality measure should be one value that is based on all parameters.

- Errors around edges is perceived as bad.

- Errors in the foreground are perceived worse than errors in the background.

HOW GOOD IS THE IMAGE QUALITY, CONT.

- An image quality measure that is well aligned with our perception is typically based
on several parameter

- Each parameter should try to indicate how bad a certain compression error trait is.
- The final image quality measure should be one value that is based on all parameters.

- Errors around edges is perceived as bad.

- Errors in the foreground are perceived worse than errors in the background.
- Missing or created structures are also bad.

HOW GOOD IS THE IMAGE QUALITY, CONT.

- An image quality measure that is well aligned with our perception is typically based
on several parameter
- Each parameter should try to indicate how bad a certain compression error trait is.
- The final image quality measure should be one value that is based on all parameters.

- Errors around edges is perceived as bad.
- Errors in the foreground are perceived worse than errors in the background.

- Missing or created structures are also bad.

- The level of compression should probably vary locally in the image.
- Homogeneous areas should be compressed heavily. These areas carry little information,
and few non-zero coefficients in the 2D DFT.
- Edges, lines and other details should be compressed less. These carry more information,
and have more non-zero 2D DFT coefficients.

JPEG

THE JPEG STANDARD

- JPEG (Joint Photographic Expert Group) is one of the most common compression
methods.

33

THE JPEG STANDARD

- JPEG (Joint Photographic Expert Group) is one of the most common compression
methods.

- The JPEG-standard (originally from 1992) has both lossy and lossless variants.

33

THE JPEG STANDARD

- JPEG (Joint Photographic Expert Group) is one of the most common compression
methods.

- The JPEG-standard (originally from 1992) has both lossy and lossless variants.
- In both cases, either Huffman- or arithmetic coding is used.

33

THE JPEG STANDARD

- JPEG (Joint Photographic Expert Group) is one of the most common compression
methods.

- The JPEG-standard (originally from 1992) has both lossy and lossless variants.
- In both cases, either Huffman- or arithmetic coding is used.
- In the lossless version, predicative coding is used.

33

THE JPEG STANDARD

- JPEG (Joint Photographic Expert Group) is one of the most common compression
methods.

- The JPEG-standard (originally from 1992) has both lossy and lossless variants.
- In both cases, either Huffman- or arithmetic coding is used.
- In the lossless version, predicative coding is used.

- In the lossy version, a 2D discrete cosinus transform (DCT) is used.

33

LOSSY JPEG COMPRESSION: START

- Each image channel is partitioned into blocks of 8 x 8 piksels, and each block can be
coded separately.

- For an image with 2° intensity values, subtract 2°=! to center the image values
around 0 (if the image is originally in an unsigned format).

- Each block undergoes a 2D DCT. With this, most of the information in the 64 pixels is
located in a small area in the Fourier space.

0 67 22 LR QW 4O R LB

457 2% LI} QB A6 B 0B
WI LM LT 03B 4H M 41 0B
Subtract 128 ST 9290 45 M LB 0B AW 0
S0 QB 4B QB A6 BB 4B OB

80 QB 445 QB 20 W B

W IR IR IR R 0 W 857 858 24 46 4B 4B AR QB

5 20 B B W W WY W6 S0 QR 4 QT OB 6P 0B 6|

Figure 7: Example block, subtraction by 128, and 2D DCT.

34

2D DISCRETE COSINUS-TRANSFORM

The main ingredient of the JPEG-compression is the 2D discrete cosinus transform (2D
DCT). For an m x n image f, the 2D DCT is

Fu,v) = \/%c(u)c(v) i zn:) s ((25” 2+ml)”> - <(2y ;n”'”) NG

=0 y=0

L ifa=0,
cla) = V2 “ i (4)
1 otherwise.

- JPEG only transforms 8 x 8 tiles at a time.

- Compute 8 x 8 (from u, v) tiles of size 8 x 8 (from z,y), of
the cosine factor

- Compute 2D DCT coefficients by summing the
dot-products of the 8 x 8 block in the image and every
8 x 8 tile in the cosine image.

35

WHY DCT AND NOT DFT?

For a discrete signal with n points will the implicit n-point periodicity of a DFT introduce
high frequencies because of boundary-discontinuity. In JPEG, n = 8 and 2D, and the
boundary is the boundary of the blocks, but the point still stands.
- If we remove these frequencies we introduce heavy block-artifacts.
- If we keep them, we reduce the compression rate compared to DCT, where we often
don’t need to keep most high frequencies.

DCT is implicitly 2n-point periodically and symmetric about n, therefore will these hight
frequencies not be introduced.

36

LOSSY JPEG COMPRESSION: LOSS OF INFORMATION

- Each of the frequency-domain blocks are then point-divided by a quantization
matrix.

- The result is rounded off to the nearest integer.

- his is where we lose information, but also why we are able to achieve high
compression rates.

- This result is compressed by a coding method, before it is stored or transmitted.

- The DC and AC components are treated differently.

0B G a2 LB L 40 P LB

457 2% L2 Q6 QB B 4B

T LE LT QB 48 2B H1 OB

€@ 220 4 44 WB 0B AW W Point divide with @ (Round to nearestinteger| ® © © @ © 06 © 0
—_— B —

BB OB LB OB OB BB L8 OB

860 QI 45 AT 20 QT LB QO

8% 88 24 46 B OB AR B

&5 08 4w 0 B OW 6B oM

Figure 8: Divide the DCT block (left) with the quantization matrix (middle) and round to nearest integer (right)

LOSSY JPEG COMPRESSION: AC-COMPONENTS (SEQUENTIAL MODES)

1. The AC-components are zig-zag scanned:

- The elements are ordered in a 1D sequence.
- The absolute value of the elements will mostly
decsend through the sequence.

D(|
- Many of the elements are zero, especially at the
end of the sequence.
2. A zero-based run-length transform is performed
on the sequence.
3. The run-length tuples are coded by Huffman or
arithmetic coding. ~
- The ru n_length tuple Is here (number of O'S, Figure 9: Zig-zag gathering of AC-components into a sequence

number of bits in "non-0").
- Arithmetic coding often gives 5 — 10% better
compression.

38

LOSSY JPEG COMPRESSION: DC-COMPONENT

1. The DC-components are gathered from all the blocks in all the image channels.

39

LOSSY JPEG COMPRESSION: DC-COMPONENT

1. The DC-components are gathered from all the blocks in all the image channels.

2. These are correlated, and are therefore difference-transformed.

39

LOSSY JPEG COMPRESSION: DC-COMPONENT

1. The DC-components are gathered from all the blocks in all the image channels.
2. These are correlated, and are therefore difference-transformed.

3. The differences are coded by Huffman coding or arithmetic coding.
- More precise: The number of bits in each difference is entropy coded.

39

LOSSY JPEG DECOMPRESSION: RECONSTRUCTION OF FREQUENCY-DOMAIN BLOCKS

- The coding part (Huffman- and arithmetic coding) is reversible, and gives the AC
run-length tuples and the DC differences.

- The run-length transform and the difference transform are also reversible, and gives
the scaled and quantized 2D DCT coefficients

- The zig-zag transform is also reversible, and gives (together with the restored DC
component) an integer matrix.

- This matrix is multiplied with the quantization matrix in order to restore the sparse
frequency-domain block.

Point multiply with Result
s

©c e & & © ®
© e o © & & & =
e e e © © o o o
© © o © © & & o
© © o & & & & o
e e e © ®© & © o
© o o © & & & o
e e e © o o o o
e o © o o B

© © © © © © © B
e © e © © © © o
© e e & © & © o
© © o & & & & o
©c e e © © & o o
© © © © © & & o
e e e © © © © o

Figure 10: Multiply the quantized DCT components (left) with the quantization matrix (middle) to produce the sparse frequency-domain block (right).

40

LOSSY JPEG DECOMPRESSION: QUALITY OF RESTORED DCT IMAGE

905 G 22 WR A 40 0P LB . ¥ 0 ® 0] o) 0] 0]

4 2 L2 Q6 QB UB 0B ®) ® 0] 0]) 0]
&7 L LW 02 48 22 A1 0B @ | o ® ®) 0] @ 0]
BF 220 4 UHE VR R AV oW Compare @ 0] 0] ® 0] o) 0] 0]
B OB 4B B B BB 4 OB) ®)) 0] 0]) o)
890 @1 048 QB 20 W LB 00) ®) ®)) @ o)
8% B8 24 W OB OB AR 0B) ® ®) © 0]) 0]
B 0 4W 0T 0B 6M 6 oW))))))) 0]

Figure 11: Comparison of the original 2D DCT components (left) and the restored (right)

- The restored DCT image is not equal to the original.

“

LOSSY JPEG DECOMPRESSION: QUALITY OF RESTORED DCT IMAGE

905 G 22 WR A 40 0P LB . ¥ 0 ® 0] o) 0] 0]

4 2 L2 Q6 QB UB 0B ®) ® 0] 0]) 0]
&7 L LW 02 48 22 A1 0B @ | o ® ®) 0] @ 0]
BF 220 4 UHE VR R AV oW Compare @ 0] 0] ® 0] o) 0] 0]
B OB 4B B B BB 4 OB) ®)) 0] 0]) o)
890 @1 048 QB 20 W LB 00) ®) ®)) @ o)
8% B8 24 W OB OB AR 0B) ® ®) © 0]) 0]
B 0 4W 0T 0B 6M 6 oW))))))) 0]

Figure 11: Comparison of the original 2D DCT components (left) and the restored (right)

- The restored DCT image is not equal to the original.
- But the major features are preserved

“

LOSSY JPEG DECOMPRESSION: QUALITY OF RESTORED DCT IMAGE

905 G 22 WR A 40 0P LB . ¥ 0 ® 0] o) 0] 0]

4 2 L2 Q6 QB UB 0B ®) ® 0] 0]) 0]
&7 L LW 02 48 22 A1 0B @ | o ® ®) 0] @ 0]
BF 220 4 UHE VR R AV oW Compare @ 0] 0] ® 0] o) 0] 0]
B OB 4B B B BB 4 OB) ®)) 0] 0]) o)
890 @1 048 QB 20 W LB 00) ®) ®)) @ o)
8% B8 24 W OB OB AR 0B) ® ®) © 0]) 0]
B 0 4W 0T 0B 6M 6 oW))))))) 0]

Figure 11: Comparison of the original 2D DCT components (left) and the restored (right)
- The restored DCT image is not equal to the original.

- But the major features are preserved
- Numbers with large absolute value in the top left corner.

“

LOSSY JPEG DECOMPRESSION: QUALITY OF RESTORED DCT IMAGE

905 G 22 WR A 40 0P LB . ¥ 0 ® 0] o) 0] 0]

4 2 L2 Q6 QB UB 0B ®) ® 0] 0]) 0]
&7 L LW 02 48 22 A1 0B @ | o ® ®) 0] @ 0]
BF 220 4 UHE VR R AV oW Compare @ 0] 0] ® 0] o) 0] 0]
B OB 4B B B BB 4 OB) ®)) 0] 0]) o)
890 @1 048 QB 20 W LB 00) ®) ®)) @ o)
8% B8 24 W OB OB AR 0B) ® ®) © 0]) 0]
B 0 4W 0T 0B 6M 6 oW))))))) 0]

Figure 11: Comparison of the original 2D DCT components (left) and the restored (right)

- The restored DCT image is not equal to the original.
- But the major features are preserved
- Numbers with large absolute value in the top left corner.

- The components that was near zero in the original, are exactly zero in the restored
version.

“

LOSSY JPEG DECOMPRESSION: INVERSE 2D DCT

- We do an inverse 2D DCT on the sparse DCT component matrix.

fla,y) = \/% é;c(u)c(v)F(m v) cos (W) cos (W) NG

where

L ifa=0
clay=4v2 477

1 otherwise.

(6)

- We have then a restored image block which should be approximately equal to the
original image block.

Round(2D IDCT + 128)
_—

Figure 12: A 2D inverse DCT on the sparse DCT component matrix (left) produces an approximate image block (right)

42

LOSSY JPEG DECOMPRESSION: APPROXIMATION ERROR

¥B ¥R VB ¥R

86 19 WY WS WL WY WY

Figure 13: The difference (right) between the original block (left) and the result from the JPEG compression and decompression (middle)

- The differences between the original block and the restored are small.

43

LOSSY JPEG DECOMPRESSION: APPROXIMATION ERROR

¥B ¥R VB ¥R

86 19 WY WS WL WY WY

Figure 13: The difference (right) between the original block (left) and the result from the JPEG compression and decompression (middle)

- The differences between the original block and the restored are small.
But they are, however, not zero.

43

SSY JPEG DECOMPRESSION: APPROXIMATION ERROR

- —
—
1
R R R W W B]! !B B WO WO WO W

68 BB B\ W B0 2\ WO W W WY W6 BB

Figure 13: The difference (right) between the original block (left) and the result from the JPEG compression and decompression (middle)

- The differences between the original block and the restored are small.
But they are, however, not zero.
- The error is different on neighbouring pixels.

43

LOSSY JPEG DECOMPRESSION: APPROXIMATION ERROR

-
B]! !B B WO WO WO W

86 19 WY WS WL W WY BB B0 2\ WO W W WY W6 BB

Figure 13: The difference (right) between the original block (left) and the result from the JPEG compression and decompression (middle)

- The differences between the original block and the restored are small.
But they are, however, not zero.
- The error is different on neighbouring pixels.
- This is especially true if the neighbouring pixels belong to different blocks.

43

LOSSY JPEG DECOMPRESSION: APPROXIMATION ERROR

: =
14

R 1R R 1B B0 B B]! !B B WO WO WO W

=) W W W/ WO WO W WY Wy W6 W6
Figure 13: The difference (right) between the original block (left) and the result from the JPEG compression and decompression (middle)

- The differences between the original block and the restored are small.
But they are, however, not zero.

- The error is different on neighbouring pixels.

- This is especially true if the neighbouring pixels belong to different blocks.

- The JPEG compression/decompression can therefore introduce block artifacts, which
are block patterns in the reconstructed image (due to these different errors).

43

RECONSTRUCTION ERROR IN GRAYSCALE IMAGES

- JPEG compression can produce block-artifacts, smoothings and ring-effects.
- This is dependent on the quantization matrix, which determines how many
coefficients are kept, and how precisely they are preserved.

(a) Smoothing- and ring-effects (b) Block artifacts

44

BLOCK ARTIFACTS AND COMPRESSION RATE

(b) Difference

(d) Compressed (e) Difference (f) Detail

Figure 15: Top row: compression rate = 12.5. Bottom row: compression rate = 32.7 %5

SCALING OF QUANTIZATION MATRIX

- Lossy JPEG
compression use the
quantization matrix to
determine what
information to keep.

- The scaling factor g,
of the matrix
determines the
compression rate c,..

Figure 17: Top row, from left: (g, c¢s~) : [(1, 12), (2, 19), (4, 30)] Bottom row, from left:
(1, er) ¢ [(8,49), (16, 85), (32, 182)]

Figure 16: Quantization matrix 46

BLOCK SIZES

- We can vary the block size.
- The compression rate and execution time increases with increaseng block size.

65

48 16 32 64 128 256 512
Subimage size

- Block artifacts decreases with increasing block size,
- but the ringing-effects increases.

Fyyy:

Figure 18: Original image (left). Different block sizes (left to right): 2 X 2,4 X 4,8 x 8

47

LOSSY JPEG COMPRESSION OF COLOR IMAGE

- Change color space (from RGB) in order to separate luminance from chrominance.
- This is more aligned to how we percieve a color image.
- Light intensity is more important to us than chromaticity.
- Can also produce lower complexity in each channel.
- (Normally) we downsample the chromaticity-channels. Typically with a factor 2 in
each channel.
- Each channel is partitioned into 8 x 8 blocks, and each block is coded separately as
before.
- We may use different quantization matrices for the luminocity and chromaticity
channels.

Blockify each
image channel

Change colorspace
—_—

48

LOSSY JPEG DECOMPRESSION OF COLOR IMAGE

- Every decompressed 8 x 8 block in each image channel is gathered in a matrix for

this channel.

- The image channels are gathered to create a color image.

- We change color space to RGB for display, or CMYK for printing.
- Even if the chromaticity channels have reduced resolution, the resolution in the RGB

space is full.

- We can get 8 x 8 block artifacts in intensity.
- With 2 times downsampling in each direction in the chromaticity channels, we can get
16 x 16 block artifacts in chroma ("colors”).

B

gather image channels
—_——

Decompress blocks and
Change colorspace

49

RECONSTRUCTION ERROR IN COLOR IMAGES

(a) 15 -2 bbp (b) 0.5 - 0.75 bbp (c) 0.25 - 0.5 bbp

Figure 19: Compression of 2f bit color images. Compression level measured in bits per pixel (bbp)

JPEG2000 VS JPEG

- Original JPEG is from 1992, newer standard JPEG2000 is from 2000.
- Uses a discrete wavelet transform in stead of DCT.

- Uses more sophisticated coding algorithms.

- Higher compression and better perceptual qulity.

- No block artifacts, but ringing-effects are still present.

- More computationally demanding.

- Not widely supported, even after 17 years.

—

Figure 20: Original (left), JPEG (middle), and JPEG2000 (right)
51

LOSSLESS JPEG COMPRESSION: OVERVIEW

- The lossless JPEG variant is using predictive coding.

52

LOSSLESS JPEG COMPRESSION: OVERVIEW

- The lossless JPEG variant is using predictive coding.

- Generally, for an image f, predictive coding codes

e(z,y) = f(x,y) — g(x,y),

where g(x,y) is predicted using neighbouring values of (z,y).

52

LOSSLESS JPEG COMPRESSION: OVERVIEW

- The lossless JPEG variant is using predictive coding.

- Generally, for an image f, predictive coding codes

e(z,y) = f(x,y) — g(x,y),

where g(x,y) is predicted using neighbouring values of (z,y).

- A'linear predictor of order (m,n):

g(z,y) = round {Zzauf@ — 5y —.7)]

i=1 j=1

52

LOSSLESS JPEG COMPRESSION: OVERVIEW

- The lossless JPEG variant is using predictive coding.
- Generally, for an image f, predictive coding codes
e(z,y) = f(z,y) — 9(,9),

where g(x,y) is predicted using neighbouring values of (z,y).

- A'linear predictor of order (m,n):

g('ray) - Iound Zzauf(x _Zay_])

i=1 j=1

- Equal-length coding requires an extra bit per pixel e(z, y).

- Or even more bits if the sum of the prediction-coefficients a;;, exceeds 1.
- The solution is entropy-coding.

52

LOSSLESS JPEG COMPRESSION: DETAIL

- In lossless JPEG compression, f(x,y) is predicted using up
to three previously processed elements.
- Z is the pixel we want to predict.
- Use some or all of the elements A, B, C.

O >
> o

- The prediction error is near zero, and is entropy coded
with either Huffman coding or arithmetic coding.

- The compression rate is dependent on
- Bits per pixel in the original image.
- The entropy in the prediction error.

- For normal color images, the compression rate is about 2. | Figure 2t what elements used in predictive coding of

element Z. Blue is processed, pink is not.

- Is mostly only used in medical applications.

53

LOSSLESS CODING OF IMAGE SEQUENCES

For a sequence of images stacked as f(z,y,t), an m'th order prediction can be computed
as

g(z,y,t) = round [Z ok f(z,y,t — 1)]
k=1
Motion detection and motion compensation is necessary inside so called macro blocks

(typically of shape 16 x 16) to increase the compression rate.

- The difference entropy is low: H = 2.59.

- This gives an optimal compression rate (when
single-differences is coded) of ¢, = 8/2.59 = 3.
- Figure to the right
- Top row: Two frames from an orbiting space
shuttle video.
- Bottom row: Prediction error image using order 1

prediction (left), and a histogram of the
prediction error (right).

54

DIGITAL VIDEO

- Compression of digital image sequences/video is usually based on predictive coding
with motion-compensation and 2D DCT.

55

DIGITAL VIDEO

- Compression of digital image sequences/video is usually based on predictive coding
with motion-compensation and 2D DCT.

- Newer standards use often prediciton based on both previous and future images in
the sequence.

55

DIGITAL VIDEO

- Compression of digital image sequences/video is usually based on predictive coding
with motion-compensation and 2D DCT.

- Newer standards use often prediciton based on both previous and future images in
the sequence.

- With 50-60 frames per second there is a lot to gain by prediction.

55

DIGITAL VIDEO

- Compression of digital image sequences/video is usually based on predictive coding
with motion-compensation and 2D DCT.

- Newer standards use often prediciton based on both previous and future images in
the sequence.

- With 50-60 frames per second there is a lot to gain by prediction.

- I1SO/IEC standards for video compression (through the Motion Picture Expert Group
(MPEG)): MPEG-1 (1992), MPEG-2 (1994), MPEG-4 (1998), MPEG-H (2013).

- ITU-T have also standards for video compression (throught the Visual Coding Experts
Group (VCEG): H120 (1984), H.26x-family (H.265 (2013) = MPEG-H part 2)

55

SUMMARY

- The purpose of compression is to represent "the same” information more compactly
by reducing or removing redundancy.

- Compression is based on information theory.

- The number of bits per symbol is central, and varies with the compression method
and input message.
- Central algorithms:
- Run-length transform
- LZW transform
- 2D DCT
- Predictive coding
- Difference transform
- Huffman coding
- Arithmetic coding

56

QUESTIONS?

	Introduction and Repetition
	Some transforms
	JPEG

