COMPRESSION AND CODING II

Ole-Johan Skrede

03.05.2017

INF2310 - Digital Image Processing

Department of Informatics The Faculty of Mathematics and Natural Sciences University of Oslo

After original slides by Andreas Kleppe

· Difference transform

- · Difference transform
- · Run-length transform

- · Difference transform
- · Run-length transform
- \cdot LZW-compression

- · Difference transform
- · Run-length transform
- · LZW-compression
- · JPEG compression

- · Difference transform
- · Run-length transform
- · LZW-compression
- · JPEG compression
- · Lossless predictive coding

- · Difference transform
- · Run-length transform
- \cdot LZW-compression
- \cdot JPEG compression
- · Lossless predictive coding
- $\cdot\,$ Sections from the compendium:
 - · 18.4 Noen transformer som brukes i kompresjon
 - 18.7.3 Lempel-Ziv-Welch (LZW) algoritmen
 - · 18.8.0 Koding med informasjonstap
 - · 18.8.1 JPEG

INTRODUCTION AND REPETITION

REPETITION: COMPRESSION

Figure 1: Three steps of compression. Green arrows: lossless, red arrows: lossy

- \cdot We can group compression in to three steps:
 - Transformation: A more compact image representation.
 - · *Qunatization:* Representation approximation.
 - · Coding: Transformation from one set of symbols to another.

REPETITION: COMPRESSION

Figure 1: Three steps of compression. Green arrows: lossless, red arrows: lossy

- · We can group compression in to three steps:
 - Transformation: A more compact image representation.
 - · *Qunatization:* Representation approximation.
 - · *Coding:* Transformation from one set of symbols to another.
- · Compression can either be *lossless* or *lossy*.
 - · Lossless: We are able to perfectly reconstruct the original image.
 - · Lossy: We can only reconstruct the original image to a certain degree (but not perfect).
- · There exists a number of methods for both types.

- · Psychovisual redundancy
 - · Information that we cannot percieve.
 - \cdot Can be compressed by e.g. subsampling or by reducing the number of bits per pixel.

- Psychovisual redundancy
 - · Information that we cannot percieve.
 - \cdot Can be compressed by e.g. subsampling or by reducing the number of bits per pixel.
- · Inter-pixel temporal redundancy
 - · Correlation between successive images in a sequence.
 - A sequence can be compressed by only storing some frames, and then only differences for the rest of the sequence.

- Psychovisual redundancy
 - · Information that we cannot percieve.
 - \cdot Can be compressed by e.g. subsampling or by reducing the number of bits per pixel.
- · Inter-pixel temporal redundancy
 - $\cdot\,$ Correlation between successive images in a sequence.
 - A sequence can be compressed by only storing some frames, and then only differences for the rest of the sequence.
- Inter-pixel spatial redundancy
 - · Correlation between neighbouring pixels within an image.
 - $\cdot\,$ Can be compressed by e.g. run-length methods.

- Psychovisual redundancy
 - · Information that we cannot percieve.
 - \cdot Can be compressed by e.g. subsampling or by reducing the number of bits per pixel.
- · Inter-pixel temporal redundancy
 - $\cdot\,$ Correlation between successive images in a sequence.
 - A sequence can be compressed by only storing some frames, and then only differences for the rest of the sequence.
- Inter-pixel spatial redundancy
 - · Correlation between neighbouring pixels within an image.
 - $\cdot\,$ Can be compressed by e.g. run-length methods.
- · Coding redundancy
 - \cdot Information is not represented optimally by the symbols in the code.
 - This is often measured as the difference between average code length and some theoretical minimum code length.

Types of redundance $ ightarrow$	Psycho- visual	Inter-pixel temporal	Inter-pixel spatial	Coding
Shannon-Fano coding Huffman coding Arithmetic coding				\checkmark \checkmark
Lossless predicative coding in time Lossless JPEG Lossy JPEG Defference transform Run-length transform LZW transform	V	\checkmark		√ √ √

SOME TRANSFORMS

 \cdot Horizontal pixels have often quite similar intensity values.

- · Horizontal pixels have often quite similar intensity values.
- Transform each pixelvalue f(x, y) as the difference between the pixel at (x, y) and (x, y - 1).
- $\cdot \;$ That is, for an $m \times n$ image f , let g[x,0] = f[x,0] , and

$$g[x,y] = f[x,y] - f[x,y-1], \quad y \in \{1,2,\dots,n-1\}$$
(1)

for all rows $x \in \{0, 1, ..., m - 1\}$.

- · Horizontal pixels have often quite similar intensity values.
- Transform each pixelvalue f(x, y) as the difference between the pixel at (x, y) and (x, y - 1).
- $\cdot \;$ That is, for an $m \times n$ image f , let g[x,0] = f[x,0] , and

$$g[x,y] = f[x,y] - f[x,y-1], \quad y \in \{1,2,\dots,n-1\}$$
(1)

for all rows $x \in \{0, 1, ..., m-1\}$.

• Note that for an image f taking values in $[0, 2^b - 1]$, values of the transformed image g take values in $[-(2^b - 1), 2^b - 1]$.

- · Horizontal pixels have often quite similar intensity values.
- Transform each pixelvalue f(x, y) as the difference between the pixel at (x, y) and (x, y - 1).
- $\cdot \;$ That is, for an $m \times n$ image f , let g[x,0] = f[x,0] , and

$$g[x,y] = f[x,y] - f[x,y-1], \quad y \in \{1,2,\dots,n-1\}$$
(1)

for all rows $x \in \{0, 1, ..., m - 1\}$.

- Note that for an image f taking values in $[0, 2^b 1]$, values of the transformed image g take values in $[-(2^b 1), 2^b 1]$.
- This means that we need to use b + 1 bits for each g(x, y) if we are going to use equal-size codeword for every value.

- \cdot Horizontal pixels have often quite similar intensity values.
- Transform each pixelvalue f(x, y) as the difference between the pixel at (x, y) and (x, y - 1).
- \cdot That is, for an $m \times n$ image f, let g[x,0] = f[x,0], and

$$g[x,y] = f[x,y] - f[x,y-1], \quad y \in \{1,2,\dots,n-1\} \quad (1)$$

for all rows $x \in \{0, 1, ..., m-1\}$.

- Note that for an image f taking values in $[0, 2^b 1]$, values of the transformed image g take values in $[-(2^b 1), 2^b 1]$.
- · This means that we need to use b + 1 bits for each g(x, y) if we are going to use equal-size codeword for every value.
- Often, the differences are close to 0, which means that natural binary coding of the differences are not optimal.

Figure 3: $H \approx 5.07 \implies c_T \approx 1.6$

Algorithm 1 Forward difference transform

```
procedure ForwardDiff(f)
```

```
g \leftarrow 0
for r \in \{0, 1, \dots, m\} do
g[r, 0] \leftarrow f[r, 0]
for c \in \{1, 2, \dots, n-1\} do
g[r, c] \leftarrow f[r, c] - f[r, c-1]
end for
end for
return g
end procedure
```

 $\triangleright \ f \ \text{is an image of shape} \ m \times n \\ \triangleright \ \text{Difference image with same shape as} \ f$

Algorithm 2 Backward difference transform

```
procedure BACKWARDDIFF(g)
```

```
h \leftarrow 0

for r \in \{0, 1, \dots, m\} do

h[r, 0] \leftarrow g[r, 0]

for c \in \{1, 2, \dots, n-1\} do

h[r, c] \leftarrow g[r, c] + h[r, c-1]

end for

return h

end procedure
```

ightarrow g is an image of shape $m \times n$ ightarrow Image with same shape as g \cdot Often, images contain objects with similar intensity values.

- \cdot Often, images contain objects with similar intensity values.
- · Run-length transform use neighbouring pixels with the same value.
 - · Note: This requires equality, not only similarity.
 - $\cdot\,$ Run-length transform is compressing more with decreasing complexity.

- $\cdot\,$ Often, images contain objects with similar intensity values.
- · Run-length transform use neighbouring pixels with the same value.
 - · Note: This requires equality, not only similarity.
 - $\cdot\,$ Run-length transform is compressing more with decreasing complexity.
- \cdot The run-length transform is reversible.

- $\cdot\,$ Often, images contain objects with similar intensity values.
- · Run-length transform use neighbouring pixels with the same value.
 - · Note: This requires equality, not only similarity.
 - $\cdot\,$ Run-length transform is compressing more with decreasing complexity.
- · The run-length transform is reversible.
- · Codes sequences of values into sequences of tuples: (value, run-length).

- $\cdot\,$ Often, images contain objects with similar intensity values.
- · Run-length transform use neighbouring pixels with the same value.
 - · Note: This requires equality, not only similarity.
 - \cdot Run-length transform is compressing more with decreasing complexity.
- · The run-length transform is reversible.
- · Codes sequences of values into sequences of tuples: (value, run-length).
- Example:

 - · Code (8 numbers): (3, 6), (5, 10), (4, 2), (7, 6).
- \cdot The coding determines how many bits we use to store the tuples.

- In a binary image, we can ommit the *value* in coding. As long as we know what value is coded first, the rest have to be alternating values.
 - $\cdot \ \ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1$
 - $\cdot 5, 6, 2, 3, 5, 4$
- The histogram of the run-lengths is often not flat, entropy-coding should therefore be used to code the run-length sequence.

 $\cdot\,$ Bit slicing is extracting the value of a bit at a certain position.

- $\cdot\,$ Bit slicing is extracting the value of a bit at a certain position.
- $\cdot\,$ We will look at two different ways of doing this.

BIT SLICING

- $\cdot\,$ Bit slicing is extracting the value of a bit at a certain position.
- \cdot We will look at two different ways of doing this.
- · Let v be the value we want to extract bit values from, and n denote the bit position, starting from n = 0 at the least significant bit (LSB) to the most significant bit (MSB).

BIT SLICING

- $\cdot\,$ Bit slicing is extracting the value of a bit at a certain position.
- \cdot We will look at two different ways of doing this.
- · Let v be the value we want to extract bit values from, and n denote the bit position, starting from n = 0 at the least significant bit (LSB) to the most significant bit (MSB).
- · As an example, $10_{10} = 1010_2$ has values [1, 0, 1, 0] at n = [3, 2, 1, 0].
- · Let b be the bit value at position n in v.
- $\cdot\,$ Let us use python-syntax for bitwise operators:
 - &: Bitwise and: $1100_2 \& 1010_2 = 1000$, therefore $12_{10} \& 10_{10} = 8$.
 - · //: Integer division: 23//4 = 5 since 23/4 = 5 + 3/4.
 - $\cdot \ll$: Left bit-shift: $10_{10} \ll 3_{10} = 80_{10}$ since $1010_2 \ll 3_{10} = 1010000_2$.

Method 1

 $b = v//2^n \mod 2.$

If the result of $v//2^n$ is odd, b = 1, if it is even, b = 0.

Method 1

 $b = v//2^n \mod 2.$

If the result of $v//2^n$ is odd, b = 1, if it is even, b = 0. Method 2

 $b = [v\&(1 \ll n)] > 0.$

 $(1 \ll n)$ in binary is a 1 followed by n zeros. Therefore will a bitwise and operation on some number be 0 unless it has a bit value of 1 at position n.

Method 1

 $b = v/2^n \mod 2.$

If the result of $v//2^n$ is odd, b = 1, if it is even, b = 0. Method 2

 $b = [v\&(1 \ll n)] > 0.$

 $(1 \ll n)$ in binary is a 1 followed by n zeros. Therefore will a bitwise and operation on some number be 0 unless it has a bit value of 1 at position n. Table 1: Example with $v=234_{10}=11101010_2$

	Method	11	Method 2		
n	$v//2^n$	b	$v\&(1\ll n)$	b	
7	1	1	128	1	
6	3	1	64	1	
5	7	1	32	1	
4	14	0	0	0	
3	29	1	8	1	
2	58	0	0	0	
1	117	1	2	1	
0	234	0	0	0	
BIT SLICING IN IMAGES: EXAMPLE

- Every codeword is of equal length.
- The code of each symbol is the binary representation of the symbol's (zero indiced) index.

- Every codeword is of equal length.
- The code of each symbol is the binary representation of the symbol's (zero indiced) index.
- Example: A 3-bits natural code has 8 possible values.

Symbol	a	b	С	d	е	f	g	h
Index	0	1	2	3	4	5	6	7
Codeword	000	001	010	011	100	101	110	111

• An alternative binary representation (or coding).

- An alternative binary representation (or coding).
- \cdot Close numbers need not have many bit values in common, e.g. $127_{10}=0111111_2$ and $128_{10}=10000000.$

- \cdot An alternative binary representation (or coding).
- \cdot Close numbers need not have many bit values in common, e.g. $127_{10}=0111111_2$ and $128_{10}=10000000.$
- Since neighbouring pixels often have similar values, this means that natural binary coded images often have high bit-plane complexity.

- \cdot An alternative binary representation (or coding).
- \cdot Close numbers need not have many bit values in common, e.g. $127_{10}=0111111_2$ and $128_{10}=10000000.$
- Since neighbouring pixels often have similar values, this means that natural binary coded images often have high bit-plane complexity.
- · Sometimes, e.g. in run-length coding, this is not desired.

- \cdot An alternative binary representation (or coding).
- \cdot Close numbers need not have many bit values in common, e.g. $127_{10}=0111111_2$ and $128_{10}=10000000.$
- Since neighbouring pixels often have similar values, this means that natural binary coded images often have high bit-plane complexity.
- · Sometimes, e.g. in run-length coding, this is not desired.
- · In Gray code, only one bit value is changed between adjacent integer values.

- \cdot An alternative binary representation (or coding).
- \cdot Close numbers need not have many bit values in common, e.g. $127_{10}=0111111_2$ and $128_{10}=10000000.$
- Since neighbouring pixels often have similar values, this means that natural binary coded images often have high bit-plane complexity.
- · Sometimes, e.g. in run-length coding, this is not desired.
- · In Gray code, only one bit value is changed between adjacent integer values.
- The codewords in natural binary coding and Gray code are of equal length, the only difference is *what codeword is assigned to what value*.

BINARY REPRESENTATION TRANSFORM: NATURAL TO GRAY CODE

Algorithm 3 Natural to Gray coding transform

procedure NATTOGRAY(n) $g \leftarrow []$ $c \leftarrow false$ for $b \in n$ do if c then $q \leftarrow [1-b]$ else $q \leftarrow [b]$ end if if b == 1 then $c \leftarrow true$ else $c \leftarrow \mathsf{false}$ end if end for return q end procedure

▷ n list of naturally coded bits
▷ Initialize Gray list to empty
▷ Boolean that decides whether to complement or not

 \triangleright Append to g

Algorithm 4 Gray to Natural coding transform

procedure GRAYIONAI(g)	$\triangleright g$ list of dray coded bits
$n \leftarrow []$	▷ Initialize natural list to empty
$c \leftarrow false$ \triangleright Boolean that de	ecides whether to complement or not
for $b \in g$ do	
if c then	
$n \leftarrow [1-b]$	ho Append to g
else	
$n \leftarrow [b]$	
end if	
if $b == 1$ then	
$c \leftarrow \neg c$	\triangleright Switch value of c
end if	
end for	
return n	
end procedure	

Decimal	Gray code	Natural code
0	0000	0000
1	0001	0001
2	0011	0010
3	0010	0011
4	0110	0100
5	0111	0101
6	0101	0110
7	0100	0111
8	1100	1000
9	1101	1001
10	1111	1010
11	1110	1011
12	1010	1100
13	1011	1101
14	1001	1110
15	1000	1111

BIT PLANES IN NATURAL BINARY CODES AND GRAY CODES

- \cdot The figures below show bit planes from the MSB (left) to LSB (right).
- \cdot The MSB is always equal in the two representations.
- The Gray code representation has typically fewer "noise planes", which implies that run-length transforms can compress more.

Figure 5: Natural binary representation

Figure 6: Gray code representation

- \cdot A member of the *LZ** family of compression schemes.
- Utilizes patterns in the message by looking at symbol occurances, and therefore mostly reduces inter sample redundancy.
- $\cdot\,$ Maps one symbol sequence to one code.

- \cdot A member of the *LZ** family of compression schemes.
- Utilizes patterns in the message by looking at symbol occurances, and therefore mostly reduces inter sample redundancy.
- $\cdot\,$ Maps one symbol sequence to one code.
- · Based on a dictionary between symbol sequence and code that is built on the fly.
 - $\cdot\,$ This is done both in encoding and decoding.
 - · The dictionary is not stored or transmitted.

- \cdot A member of the *LZ** family of compression schemes.
- Utilizes patterns in the message by looking at symbol occurances, and therefore mostly reduces inter sample redundancy.
- $\cdot\,$ Maps one symbol sequence to one code.
- · Based on a dictionary between symbol sequence and code that is built on the fly.
 - $\cdot\,$ This is done both in encoding and decoding.
 - $\cdot\,$ The dictionary is not stored or transmitted.
- \cdot The dictionary is initialized with an alphabeth of symbols of length one.

1. Initialize the dictionary from an alphabeth, e.g. $D = \{\# : 0, a : 1, b : 2, ...\}$ (where # is an end-of-message symbol).

- 1. Initialize the dictionary from an alphabeth, e.g. $D = \{\# : 0, a : 1, b : 2, ...\}$ (where # is an end-of-message symbol).
- 2. Initialize the current input w, to be the first symbol in W.

- 1. Initialize the dictionary from an alphabeth, e.g. $D = \{\# : 0, a : 1, b : 2, ...\}$ (where # is an end-of-message symbol).
- 2. Initialize the current input w, to be the first symbol in W.
- 3. Find the longest string $d \in D$ that matches the current input w.

- 1. Initialize the dictionary from an alphabeth, e.g. $D = \{\# : 0, a : 1, b : 2, ...\}$ (where # is an end-of-message symbol).
- 2. Initialize the current input w, to be the first symbol in W.
- 3. Find the longest string $d \in D$ that matches the current input w.
- 4. Output (or send) the codeword of d, D[d].

- 1. Initialize the dictionary from an alphabeth, e.g. $D = \{\# : 0, a : 1, b : 2, ...\}$ (where # is an end-of-message symbol).
- 2. Initialize the current input w, to be the first symbol in W.
- 3. Find the longest string $d \in D$ that matches the current input w.
- 4. Output (or send) the codeword of d, D[d].
- 5. Create a new string and append it to *D*, this new string is created as the current string *d* concatenated with the next symbol in the input message *W*.

- 1. Initialize the dictionary from an alphabeth, e.g. $D = \{\# : 0, a : 1, b : 2, ...\}$ (where # is an end-of-message symbol).
- 2. Initialize the current input w, to be the first symbol in W.
- 3. Find the longest string $d \in D$ that matches the current input w.
- 4. Output (or send) the codeword of d, D[d].
- 5. Create a new string and append it to *D*, this new string is created as the current string *d* concatenated with the next symbol in the input message *W*.
- 6. This new dictionary entry will get the next codeword not in use.

- 1. Initialize the dictionary from an alphabeth, e.g. $D = \{\# : 0, a : 1, b : 2, ...\}$ (where # is an end-of-message symbol).
- 2. Initialize the current input w, to be the first symbol in W.
- 3. Find the longest string $d \in D$ that matches the current input w.
- 4. Output (or send) the codeword of d, D[d].
- 5. Create a new string and append it to *D*, this new string is created as the current string *d* concatenated with the next symbol in the input message *W*.
- 6. This new dictionary entry will get the next codeword not in use.
- 7. Set current symbol w to be the next string in W that is also in D.

- 1. Initialize the dictionary from an alphabeth, e.g. $D = \{\# : 0, a : 1, b : 2, ...\}$ (where # is an end-of-message symbol).
- 2. Initialize the current input w, to be the first symbol in W.
- 3. Find the longest string $d \in D$ that matches the current input w.
- 4. Output (or send) the codeword of d, D[d].
- 5. Create a new string and append it to *D*, this new string is created as the current string *d* concatenated with the next symbol in the input message *W*.
- 6. This new dictionary entry will get the next codeword not in use.
- 7. Set current symbol w to be the next string in W that is also in D.
- 8. Unless w = #, go to 3.

- \cdot Message: ababcbababaaaabab#
- · Initial dictionary: { #:0, a:1, b:2, c:3 }
- · New dictionary entry: current string plus next unseen symbol

Message	Current string	Codeword	New dict entry
ababcbababaaaabab#	a	1	ab:4
a <mark>ba</mark> bcbababaaaaabab#	b	2	ba:5
ab <mark>abc</mark> bababaaaaabab#	ab	4	abc:6
abab <mark>cb</mark> ababaaaaabab#	С	3	cb:7
ababc <mark>bab</mark> abaaaaabab#	ba	5	bab:8
ababcba <mark>baba</mark> aaaabab#	bab	8	baba:9
ababcbabab <mark>aa</mark> aaabab#	a	1	aa:10
ababcbababa <mark>aaa</mark> abab#	aa	10	aaa:11
ababcbababaaa <mark>aab</mark> ab#	aa	10	aab:12
ababcbababaaaaa <mark>bab#</mark>	bab	8	bab#:13
ababcbababaaaaabab <mark>#</mark>	#	0	

· Encoded message: 1,2,4,3,5,8,1,10,10,8,0.

· Assuming original bps = 8, and coded bps = 4, we achieve a compression rate of

$$c_r = \frac{8 \cdot 19}{4 \cdot 11} \approx 3.5 \tag{2}$$

· Decode the encoded string codeword by codeword.

- $\cdot\,$ Decode the encoded string codeword by codeword.
- Build the dictionary by decoding the current codeword and concatenate this encoded string with:
 - If the next codeword can be decoded (it is already in the dictionary): The first character of the *next decoded string*.
 - If the next codeword is not in the dictionary: The first character of the *current decoded* string¹.

- $\cdot\,$ Decode the encoded string codeword by codeword.
- Build the dictionary by decoding the current codeword and concatenate this encoded string with:
 - If the next codeword can be decoded (it is already in the dictionary): The first character of the *next decoded string*.
 - If the next codeword is not in the dictionary: The first character of the *current decoded* string¹.
- Processing one codeword at the time, and building the dictionary at the same time, will in the end decode the whole sequence of codewords.

¹See next page

 \cdot Let the currently decoded string be X with first symbol x.

- \cdot Let the currently decoded string be X with first symbol x.
- \cdot The new dictionary entry is X? : n, where n is the codeword.

- \cdot Let the currently decoded string be X with first symbol x.
- · The new dictionary entry is X? : n, where n is the codeword.
- We look for n in our dictionary, but see that it is not there. We know that ? should be the first symbol y of the decoded string Y at n, but how do we know what it is?

- \cdot Let the currently decoded string be X with first symbol x.
- · The new dictionary entry is X? : n, where n is the codeword.
- We look for n in our dictionary, but see that it is not there. We know that ? should be the first symbol y of the decoded string Y at n, but how do we know what it is?
- The first thing to realise is that this only happens if Y was encountered immediately after the creation of Y : n in the encoding.

- \cdot Let the currently decoded string be X with first symbol x.
- \cdot The new dictionary entry is X? : n, where n is the codeword.
- We look for n in our dictionary, but see that it is not there. We know that ? should be the first symbol y of the decoded string Y at n, but how do we know what it is?
- The first thing to realise is that this only happens if Y was encountered immediately after the creation of Y : n in the encoding.
- Therefore X? = Y, and therefore, y = x, where x was the first symbol of the string X.

- · Encoded message: 1,2,4,3,5,8,1,10,10,8,0
- \cdot Initial dictionary: { #:0, a:1, b:2, c:3 }
- · New dictionary entry: current string plus first symbol in next string

	Current	New di	New dict entry	
Message	string	Final	Proposal	
1,2,4,3,5,8,1,10,10,8,0	a		a?:4	
1, <mark>2,4</mark> ,3,5,8,1,10,10,8,0	b	ab:4	b?:5	
1,2, <mark>4,3</mark> ,5,8,1,10,10,8,0	ab	ba:5	ab?:6	
1,2,4, <mark>3,5</mark> ,8,1,10,10,8,0	С	abc:6	c?:7	
1,2,4,3, <mark>5,8</mark> ,1,10,10,8,0	ba	cb:7	ba?:8	
1,2,4,3,5, <mark>8,1</mark> ,10,10,8,0	bab	bab:8	bab?:9	
1,2,4,3,5,8, <mark>1,10</mark> ,10,8,0	a	baba:9	a?:10	
1,2,4,3,5,8,1, <mark>10,10</mark> ,8,0	aa	aa:10	aa?:11	
1,2,4,3,5,8,1,10, <mark>10,8</mark> ,0	aa	aaa:11	aa?:12	
1,2,4,3,5,8,1,10,10, <mark>8,0</mark>	bab	aab:12	bab?:13	
1,2,4,3,5,8,1,10,10,8, <mark>0</mark>	#	bab#:13		

Decoded message: ababcbababaaaaabab#

LZW COMPRESSION, SUMMARY

• The LZW codes are normally coded with a natural binary coding.

LZW COMPRESSION, SUMMARY

- \cdot The LZW codes are normally coded with a natural binary coding.
- Typical text files are usually compressed with a factor of about 2.
- \cdot The LZW codes are normally coded with a natural binary coding.
- \cdot Typical text files are usually compressed with a factor of about 2.
- · LZW coding is used a lot
 - In the Unix utility **compress** from 1984.
 - · In the GIF image format.
 - $\cdot\,$ An option in the TIFF and PDF format.

- \cdot The LZW codes are normally coded with a natural binary coding.
- · Typical text files are usually compressed with a factor of about 2.
- · LZW coding is used a lot
 - In the Unix utility **compress** from 1984.
 - $\cdot\,$ In the GIF image format.
 - An option in the **TIFF** and **PDF** format.
- Experienced a lot of negative attention because of (now expired) patents. The **PNG** format was created in 1995 to get around this.
- $\cdot\,$ The LZW can be coded further (e.g. with Huffman codes).

- \cdot The LZW codes are normally coded with a natural binary coding.
- · Typical text files are usually compressed with a factor of about 2.
- · LZW coding is used a lot
 - In the Unix utility **compress** from 1984.
 - $\cdot\,$ In the GIF image format.
 - An option in the **TIFF** and **PDF** format.
- Experienced a lot of negative attention because of (now expired) patents. The **PNG** format was created in 1995 to get around this.
- $\cdot\,$ The LZW can be coded further (e.g. with Huffman codes).
- $\cdot\,$ Not all created codewords are used.

- \cdot The LZW codes are normally coded with a natural binary coding.
- · Typical text files are usually compressed with a factor of about 2.
- · LZW coding is used a lot
 - In the Unix utility **compress** from 1984.
 - $\cdot\,$ In the GIF image format.
 - An option in the **TIFF** and **PDF** format.
- Experienced a lot of negative attention because of (now expired) patents. The **PNG** format was created in 1995 to get around this.
- \cdot The LZW can be coded further (e.g. with Huffman codes).
- $\cdot\,$ Not all created codewords are used.
- \cdot We can limit the number of generated codewords.
 - Setting a limit on the number of codewords, and deleting old or seldomly used codewords.
 - $\cdot\,$ Both the encoder and decoder need to have the same rules for deleting.

• In order to achieve high compression rates, it is often necessary with *lossy* compression.

- In order to achieve high compression rates, it is often necessary with *lossy compression*.
- Note: in this case, the original signal *can not be recovered* because of loss of information.

- In order to achieve high compression rates, it is often necessary with *lossy* compression.
- Note: in this case, the original signal *can not be recovered* because of loss of information.
- · Some simple methods for lossy compression:
 - · Requantizing to fewer graylevel intensities.
 - · Resampling to lower spatial resolution.
 - Filter based methods, e.g. replacing the values in every non-overlapping $p \times q$ rectangle in an image with the mean or median value of that region.

HOW GOOD IS THE IMAGE QUALITY

• If we use lossy compression, we need to make sure that the result after decompression is *good enough*.

HOW GOOD IS THE IMAGE QUALITY

- If we use lossy compression, we need to make sure that the result after decompression is *good enough*.
- · For an $m \times n$ image f, let g be the resulting image after f has been compressed and decompressed. The error is then the difference

$$e(x,y) = f(x,y) - g(x,y).$$

HOW GOOD IS THE IMAGE QUALITY

- If we use lossy compression, we need to make sure that the result after decompression is *good enough*.
- \cdot For an $m \times n$ image f, let g be the resulting image after f has been compressed and decompressed. The error is then the difference

$$e(x, y) = f(x, y) - g(x, y).$$

 \cdot The root mean square (RMS) error between the images is

$$RMS = \sqrt{\frac{1}{mn} \sum_{x=1}^{m} \sum_{y=1}^{n} e^2(x, y)}$$

· If we interpret the error as noise, we can define the mean squared signal to noise ratio (RMS_{MS}) as

$$SNR_{MS} = \frac{\sum_{x=1}^{m} \sum_{y=1}^{n} g^2(x,y)}{\sum_{x=1}^{m} \sum_{y=1}^{n} e^2(x,y)}$$

 \cdot The RMS value of the SNR is then

$$SNR_{RMS} = \sqrt{\frac{\sum_{x=1}^{m} \sum_{y=1}^{n} g^2(x,y)}{\sum_{x=1}^{m} \sum_{y=1}^{n} e^2(x,y)}}$$

 \cdot The RMS value of the SNR is then

$$SNR_{RMS} = \sqrt{\frac{\sum_{x=1}^{m} \sum_{y=1}^{n} g^2(x,y)}{\sum_{x=1}^{m} \sum_{y=1}^{n} e^2(x,y)}}$$

• The quality measures above considers all errors in the whole image, and treat them equally.

 $\cdot \,$ The RMS value of the SNR is then

$$SNR_{RMS} = \sqrt{\frac{\sum_{x=1}^{m} \sum_{y=1}^{n} g^2(x,y)}{\sum_{x=1}^{m} \sum_{y=1}^{n} e^2(x,y)}}$$

- The quality measures above considers all errors in the whole image, and treat them equally.
- \cdot Our perception does not necessary agree. E.g. small errors over the whole image will get a larger SNR_{MS} than missing or created features. But we will percieve the latter having inferior quality.

 $\cdot \,$ The RMS value of the SNR is then

$$SNR_{RMS} = \sqrt{\frac{\sum_{x=1}^{m} \sum_{y=1}^{n} g^2(x,y)}{\sum_{x=1}^{m} \sum_{y=1}^{n} e^2(x,y)}}$$

- The quality measures above considers all errors in the whole image, and treat them equally.
- \cdot Our perception does not necessary agree. E.g. small errors over the whole image will get a larger SNR_{MS} than missing or created features. But we will percieve the latter having inferior quality.
- Often, our desire is that the image quality shall mirror *our perception of the quality of the image.*
- \cdot This is especially true for image display purposes.

- An image quality measure that is well aligned with our perception is typically based on several parameter
 - \cdot Each parameter should try to indicate how bad a certain compression error trait is.
 - \cdot The final image quality measure should be one value that is based on all parameters.

- An image quality measure that is well aligned with our perception is typically based on several parameter
 - \cdot Each parameter should try to indicate how bad a certain compression error trait is.
 - \cdot The final image quality measure should be one value that is based on all parameters.
- · Errors around edges is perceived as bad.

- An image quality measure that is well aligned with our perception is typically based on several parameter
 - \cdot Each parameter should try to indicate how bad a certain compression error trait is.
 - \cdot The final image quality measure should be one value that is based on all parameters.
- · Errors around edges is perceived as bad.
- · Errors in the foreground are perceived worse than errors in the background.

- An image quality measure that is well aligned with our perception is typically based on several parameter
 - \cdot Each parameter should try to indicate how bad a certain compression error trait is.
 - \cdot The final image quality measure should be one value that is based on all parameters.
- · Errors around edges is perceived as bad.
- Errors in the foreground are perceived worse than errors in the background.
- · Missing or created structures are also bad.

- An image quality measure that is well aligned with our perception is typically based on several parameter
 - \cdot Each parameter should try to indicate how bad a certain compression error trait is.
 - \cdot The final image quality measure should be one value that is based on all parameters.
- · Errors around edges is perceived as bad.
- Errors in the foreground are perceived worse than errors in the background.
- · Missing or created structures are also bad.
- The level of compression should probably vary locally in the image.
 - Homogeneous areas should be compressed heavily. These areas carry little information, and few non-zero coefficients in the 2D DFT.
 - Edges, lines and other details should be compressed less. These carry more information, and have more non-zero 2D DFT coefficients.

• JPEG (*Joint Photographic Expert Group*) is one of the most common compression methods.

- JPEG (*Joint Photographic Expert Group*) is one of the most common compression methods.
- The JPEG-standard (originally from 1992) has both lossy and lossless variants.

- JPEG (*Joint Photographic Expert Group*) is one of the most common compression methods.
- The JPEG-standard (originally from 1992) has both lossy and lossless variants.
- · In both cases, either Huffman- or arithmetic coding is used.

- JPEG (*Joint Photographic Expert Group*) is one of the most common compression methods.
- \cdot The JPEG-standard (originally from 1992) has both lossy and lossless variants.
- · In both cases, either Huffman- or arithmetic coding is used.
- In the lossless version, *predicative* coding is used.

- JPEG (*Joint Photographic Expert Group*) is one of the most common compression methods.
- \cdot The JPEG-standard (originally from 1992) has both lossy and lossless variants.
- · In both cases, either Huffman- or arithmetic coding is used.
- · In the lossless version, *predicative* coding is used.
- In the lossy version, a 2D discrete cosinus transform (DCT) is used.

LOSSY JPEG COMPRESSION: START

- \cdot Each image channel is partitioned into blocks of 8×8 piksels, and each block can be coded separately.
- For an image with 2^b intensity values, subtract 2^{b-1} to center the image values around 0 (if the image is originally in an unsigned format).
- Each block undergoes a 2D DCT. With this, most of the information in the 64 pixels is located in a small area in the Fourier space.

Figure 7: Example block, subtraction by 128, and 2D DCT.

2D DISCRETE COSINUS-TRANSFORM

The main ingredient of the JPEG-compression is the 2D discrete cosinus transform (2D DCT). For an $m \times n$ image f, the 2D DCT is

$$F(u,v) = \frac{2}{\sqrt{mn}}c(u)c(v)\sum_{x=0}^{m}\sum_{y=0}^{n}f(x,y)\cos\left(\frac{(2x+1)u\pi}{2m}\right)\cos\left(\frac{(2y+1)v\pi}{2n}\right),$$
 (3)
$$c(a) = \begin{cases} \frac{1}{\sqrt{2}} & \text{if } a = 0,\\ 1 & \text{otherwise.} \end{cases}$$
 (4)

- $\cdot\,$ JPEG only transforms 8×8 tiles at a time.
- · Compute 8×8 (from u, v) tiles of size 8×8 (from x, y), of the cosine factor
- Compute 2D DCT coefficients by summing the dot-products of the 8×8 block in the image and every 8×8 tile in the cosine image.

For a discrete signal with n points will the implicit n-point periodicity of a DFT introduce high frequencies because of boundary-discontinuity. In JPEG, n = 8 and 2D, and the boundary is the boundary of the blocks, but the point still stands.

- $\cdot\,$ If we remove these frequencies we introduce heavy block-artifacts.
- If we keep them, we reduce the compression rate compared to DCT, where we often don't need to keep most high frequencies.

DCT is implicitly 2*n*-point periodically and symmetric about *n*, therefore will these hight frequencies *not be introduced*.

- Each of the frequency-domain blocks are then point-divided by a quantization matrix.
- $\cdot\,$ The result is rounded off to the nearest integer.
- his is where we lose information, but also why we are able to achieve high compression rates.
- \cdot This result is compressed by a coding method, before it is stored or transmitted.
- \cdot The DC and AC components are treated differently.

Figure 8: Divide the DCT block (left) with the quantization matrix (middle) and round to nearest integer (right)

LOSSY JPEG COMPRESSION: AC-COMPONENTS (SEQUENTIAL MODES)

- 1. The AC-components are zig-zag scanned:
 - \cdot The elements are ordered in a 1D sequence.
 - The absolute value of the elements will mostly decsend through the sequence.
 - Many of the elements are zero, especially at the end of the sequence.
- 2. A zero-based run-length transform is performed on the sequence.
- 3. The run-length tuples are coded by Huffman or arithmetic coding.
 - The run-length tuple is here (number of 0's, number of bits in "non-0").
 - $\cdot\,$ Arithmetic coding often gives 5-10% better compression.

Figure 9: Zig-zag gathering of AC-components into a sequence.

1. The DC-components are gathered from all the blocks in all the image channels.

- 1. The DC-components are gathered from all the blocks in all the image channels.
- 2. These are correlated, and are therefore difference-transformed.

- 1. The DC-components are gathered from all the blocks in all the image channels.
- 2. These are correlated, and are therefore difference-transformed.
- 3. The differences are coded by Huffman coding or arithmetic coding.
 - $\cdot\,$ More precise: The number of bits in each difference is entropy coded.

- The coding part (Huffman- and arithmetic coding) is reversible, and gives the AC run-length tuples and the DC differences.
- The run-length transform and the difference transform are also reversible, and gives the scaled and quantized 2D DCT coefficients
- The zig-zag transform is also reversible, and gives (together with the restored DC component) an integer matrix.
- This matrix is multiplied with the quantization matrix in order to restore the sparse frequency-domain block.

Figure 10: Multiply the quantized DCT components (left) with the quantization matrix (middle) to produce the sparse frequency-domain block (right).

LOSSY JPEG DECOMPRESSION: QUALITY OF RESTORED DCT IMAGE

Figure 11: Comparison of the original 2D DCT components (left) and the restored (right)

• The restored DCT image is not equal to the original.

LOSSY JPEG DECOMPRESSION: QUALITY OF RESTORED DCT IMAGE

Figure 11: Comparison of the original 2D DCT components (left) and the restored (right)

- \cdot The restored DCT image is not equal to the original.
- · But the major features are preserved
LOSSY JPEG DECOMPRESSION: QUALITY OF RESTORED DCT IMAGE

Figure 11: Comparison of the original 2D DCT components (left) and the restored (right)

- \cdot The restored DCT image is not equal to the original.
- · But the major features are preserved
- · Numbers with large absolute value in the top left corner.

LOSSY JPEG DECOMPRESSION: QUALITY OF RESTORED DCT IMAGE

Figure 11: Comparison of the original 2D DCT components (left) and the restored (right)

- The restored DCT image is not equal to the original.
- · But the major features are preserved
- · Numbers with large absolute value in the top left corner.
- The components that was near zero in the original, are exactly zero in the restored version.

LOSSY JPEG DECOMPRESSION: INVERSE 2D DCT

 $\cdot\,$ We do an inverse 2D DCT on the sparse DCT component matrix.

$$f(x,y) = \frac{2}{\sqrt{mn}} \sum_{u=0}^{m} \sum_{v=0}^{n} c(u)c(v)F(u,v) \cos\left(\frac{(2x+1)u\pi}{2m}\right) \cos\left(\frac{(2y+1)v\pi}{2n}\right), \quad (5)$$

where

$$c(a) = \begin{cases} \frac{1}{\sqrt{2}} & \text{if } a = 0, \\ 1 & \text{otherwise.} \end{cases}$$
(6)

• We have then a restored image block which should be approximately equal to the original image block.

Figure 12: A 2D inverse DCT on the sparse DCT component matrix (left) produces an approximate image block (right)

Figure 13: The difference (right) between the original block (left) and the result from the JPEG compression and decompression (middle).

· The differences between the original block and the restored are small.

- · The differences between the original block and the restored are small.
- But they are, however, not zero.

- · The differences between the original block and the restored are small.
- But they are, however, not zero.
- The error is different on neighbouring pixels.

- · The differences between the original block and the restored are small.
- · But they are, however, not zero.
- · The error is different on neighbouring pixels.
- \cdot This is especially true if the neighbouring pixels belong to different blocks.

- · The differences between the original block and the restored are small.
- · But they are, however, not zero.
- · The error is different on neighbouring pixels.
- \cdot This is especially true if the neighbouring pixels belong to different blocks.
- The JPEG compression/decompression can therefore introduce *block artifacts*, which are block patterns in the reconstructed image (due to these different errors).

RECONSTRUCTION ERROR IN GRAYSCALE IMAGES

- · JPEG compression can produce *block-artifacts*, *smoothings* and *ring-effects*.
- This is dependent on the quantization matrix, which determines how many coefficients are kept, and how precisely they are preserved.

(a) Smoothing- and ring-effects

(b) Block artifacts

BLOCK ARTIFACTS AND COMPRESSION RATE

(d) Compressed

(e) Difference

(f) Detail

SCALING OF QUANTIZATION MATRIX

- Lossy JPEG compression use the quantization matrix to determine what information to keep.
- The scaling factor q, of the matrix determines the compression rate c_r.

16		10				80	æ
12	12	14			80	œ	88
14	13	16			635	0 2	63
14	υ	22		80	05	03	œ
18			80	<i>0</i> 3	188	360	22
24		22	00	686	289	330	æ
-	60	18	69	800	888	350	896
35	80	62	60	335	188	360	60

Figure 16: Quantization matrix

Figure 17: Top row, from left: $(q,\,c_{T}):\,[(1,\,12),\,(2,\,19),\,(4,\,30)]$ Bottom row, from left: $(1,\,c_{T}):\,[(8,\,49),\,(16,\,85),\,(32,\,182)]$

BLOCK SIZES

- $\cdot\,$ We can vary the block size.
- \cdot The compression rate and execution time increases with increaseng block size.

- · Block artifacts decreases with increasing block size,
- \cdot but the ringing-effects increases.

Figure 18: Original image (left). Different block sizes (left to right): 2 imes 2, 4 imes 4, 8 imes 8.

LOSSY JPEG COMPRESSION OF COLOR IMAGE

- · Change color space (from RGB) in order to separate luminance from chrominance.
 - $\cdot\,$ This is more aligned to how we percieve a color image.
 - $\cdot\,$ Light intensity is more important to us than chromaticity.
 - $\cdot\,$ Can also produce lower complexity in each channel.
- (Normally) we downsample the chromaticity-channels. Typically with a factor 2 in each channel.
- \cdot Each channel is partitioned into 8×8 blocks, and each block is coded separately as before.
- We may use different quantization matrices for the luminocity and chromaticity channels.

LOSSY JPEG DECOMPRESSION OF COLOR IMAGE

- $\cdot\,$ Every decompressed 8×8 block in each image channel is gathered in a matrix for this channel.
- The image channels are gathered to create a color image.
- \cdot We change color space to RGB for display, or CMYK for printing.
- Even if the chromaticity channels have reduced resolution, the resolution in the RGB space is full.
 - $\cdot\,$ We can get 8 \times 8 block artifacts in intensity.
 - \cdot With 2 times downsampling in each direction in the chromaticity channels, we can get 16×16 block artifacts in chroma ("colors").

RECONSTRUCTION ERROR IN COLOR IMAGES

(a) 1.5 - 2 bbp

(b) 0.5 - 0.75 bbp

(c) 0.25 - 0.5 bbp

Figure 19: Compression of 2f bit color images. Compression level measured in bits per pixel (bbp)

JPEG2000 VS JPEG

- \cdot Original JPEG is from 1992, newer standard JPEG2000 is from 2000.
- $\cdot\,$ Uses a discrete wavelet transform in stead of DCT.
- · Uses more sophisticated coding algorithms.
- · Higher compression and better perceptual qulity.
- · No block artifacts, but ringing-effects are still present.
- $\cdot\,$ More computationally demanding.
- · Not widely supported, even after 17 years.

• The lossless JPEG variant is using *predictive coding*.

LOSSLESS JPEG COMPRESSION: OVERVIEW

- \cdot The lossless JPEG variant is using *predictive coding*.
- \cdot Generally, for an image f, predictive coding codes

e(x,y) = f(x,y) - g(x,y),

where g(x, y) is predicted using neighbouring values of (x, y).

LOSSLESS JPEG COMPRESSION: OVERVIEW

- The lossless JPEG variant is using *predictive coding*.
- \cdot Generally, for an image f, predictive coding codes

$$e(x, y) = f(x, y) - g(x, y),$$

where g(x, y) is predicted using neighbouring values of (x, y).

· A linear predictor of order (m, n):

$$g(x,y) = \operatorname{round}\left[\sum_{i=1}^{m}\sum_{j=1}^{n} \alpha_{ij} f(x-i,y-j)\right]$$

LOSSLESS JPEG COMPRESSION: OVERVIEW

- The lossless JPEG variant is using *predictive coding*.
- \cdot Generally, for an image f, predictive coding codes

$$e(x, y) = f(x, y) - g(x, y),$$

where g(x, y) is predicted using neighbouring values of (x, y).

· A linear predictor of order (m, n):

$$g(x,y) = \operatorname{round}\left[\sum_{i=1}^{m}\sum_{j=1}^{n} \alpha_{ij} f(x-i,y-j)\right]$$

- · Equal-length coding requires an extra bit per pixel e(x, y).
 - \cdot Or even more bits if the sum of the prediction-coefficients a_{ij} , exceeds 1.
 - $\cdot\,$ The solution is entropy-coding.

LOSSLESS JPEG COMPRESSION: DETAIL

- · In lossless JPEG compression, f(x, y) is predicted using up to three previously processed elements.
 - $\cdot Z$ is the pixel we want to predict.
 - · Use some or all of the elements A, B, C.
- The prediction error is near zero, and is entropy coded with either Huffman coding or arithmetic coding.
- $\cdot\,$ The compression rate is dependent on
 - $\cdot\,$ Bits per pixel in the original image.
 - $\cdot\,$ The entropy in the prediction error.
- \cdot For normal color images, the compression rate is about 2.
- \cdot Is mostly only used in medical applications.

Figure 21: What elements used in predictive coding of element $\boldsymbol{Z}.$ Blue is processed, pink is not.

For a sequence of images stacked as f(x, y, t), an *m*'th order prediction can be computed as

$$g(x, y, t) = \operatorname{round}\left[\sum_{k=1}^{m} \alpha_k f(x, y, t-1)\right]$$

Motion detection and motion compensation is necessary inside so called *macro blocks* (typically of shape 16×16) to increase the compression rate.

- $\cdot\,$ The difference entropy is low: H=2.59.
- This gives an optimal compression rate (when single-differences is coded) of $c_r = 8/2.59 = 3$.
- · Figure to the right
 - Top row: Two frames from an orbiting space shuttle video.
 - Bottom row: Prediction error image using order 1 prediction (left), and a histogram of the prediction error (right).

• Compression of digital image sequences/video is usually based on *predictive coding* with motion-compensation and 2D DCT.

- Compression of digital image sequences/video is usually based on *predictive coding* with motion-compensation and 2D DCT.
- Newer standards use often prediciton based on both previous and future images in the sequence.

- Compression of digital image sequences/video is usually based on *predictive coding* with motion-compensation and 2D DCT.
- Newer standards use often prediciton based on both previous and future images in the sequence.
- \cdot With 50-60 frames per second there is a lot to gain by prediction.

- Compression of digital image sequences/video is usually based on *predictive coding* with motion-compensation and 2D DCT.
- Newer standards use often prediciton based on both previous and future images in the sequence.
- \cdot With 50-60 frames per second there is a lot to gain by prediction.
- ISO/IEC standards for video compression (through the *Motion Picture Expert Group* (MPEG)): MPEG-1 (1992), MPEG-2 (1994), MPEG-4 (1998), MPEG-H (2013).
- ITU-T have also standards for video compression (throught the *Visual Coding Experts Group* (VCEG): H.120 (1984), H.26x-family (H.265 (2013) = MPEG-H part 2)

- The purpose of compression is to represent "the same" information more compactly by reducing or removing redundancy.
- · Compression is based on information theory.
- The number of bits per symbol is central, and varies with the compression method and input message.
- · Central algorithms:
 - · Run-length transform
 - · LZW transform
 - · 2D DCT
 - · Predictive coding
 - · Difference transform
 - \cdot Huffman coding
 - · Arithmetic coding

QUESTIONS?