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∙ Fundamental morphological operators
∙ Composed morphological operators
∙ Application examples
∙ Sections from G&W:
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introduction

∙ Morphological operations are used as a step in image processing and analysis.

∙ It is used to modify the shape of objects in an image, by using local operations.
∙ It can be used to remove unwanted effects in segmentation post-processing

∙ Remove small objects (that is assumed to be noise)
∙ Smooth the edges of larger objects
∙ Fill holes in objects
∙ Link objects together

∙ It can be used as a part of object description and analysis
∙ Locate the boundary of objects
∙ Thin objects
∙ Locating objects with a certain structure
∙ Locating patterns in an image

∙ The operations are small, and often very fast.

3



introduction

∙ Morphological operations are used as a step in image processing and analysis.
∙ It is used to modify the shape of objects in an image, by using local operations.

∙ It can be used to remove unwanted effects in segmentation post-processing
∙ Remove small objects (that is assumed to be noise)
∙ Smooth the edges of larger objects
∙ Fill holes in objects
∙ Link objects together

∙ It can be used as a part of object description and analysis
∙ Locate the boundary of objects
∙ Thin objects
∙ Locating objects with a certain structure
∙ Locating patterns in an image

∙ The operations are small, and often very fast.

3



introduction

∙ Morphological operations are used as a step in image processing and analysis.
∙ It is used to modify the shape of objects in an image, by using local operations.
∙ It can be used to remove unwanted effects in segmentation post-processing

∙ Remove small objects (that is assumed to be noise)
∙ Smooth the edges of larger objects
∙ Fill holes in objects
∙ Link objects together

∙ It can be used as a part of object description and analysis
∙ Locate the boundary of objects
∙ Thin objects
∙ Locating objects with a certain structure
∙ Locating patterns in an image

∙ The operations are small, and often very fast.

3



introduction

∙ Morphological operations are used as a step in image processing and analysis.
∙ It is used to modify the shape of objects in an image, by using local operations.
∙ It can be used to remove unwanted effects in segmentation post-processing

∙ Remove small objects (that is assumed to be noise)
∙ Smooth the edges of larger objects
∙ Fill holes in objects
∙ Link objects together

∙ It can be used as a part of object description and analysis
∙ Locate the boundary of objects
∙ Thin objects
∙ Locating objects with a certain structure
∙ Locating patterns in an image

∙ The operations are small, and often very fast.

3



introduction

∙ Morphological operations are used as a step in image processing and analysis.
∙ It is used to modify the shape of objects in an image, by using local operations.
∙ It can be used to remove unwanted effects in segmentation post-processing

∙ Remove small objects (that is assumed to be noise)
∙ Smooth the edges of larger objects
∙ Fill holes in objects
∙ Link objects together

∙ It can be used as a part of object description and analysis
∙ Locate the boundary of objects
∙ Thin objects
∙ Locating objects with a certain structure
∙ Locating patterns in an image

∙ The operations are small, and often very fast.

3



motivational example

In this example, the morphological operation called dilation is used to join fragmented
characters in a poor resolution image of a text.

Figure 1: Image before (left) and after (right) dilation with the structuring element shown at the bottom
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general definition

∙ We start by formally defining two fundamental operations, dilation and erosion, for
graylevel images.

∙ Note that the curriculum is only for binary images, but we include the more general
case for context.

∙ Let f : Ωf → [0, 2b − 1] be a 2D, b-bit grayscale image.
∙ Let s : Ωs → Z be a 2D structuring element.
∙ Dilation is denoted with the symbol ⊕ and is used to ”enlarge objects” in an image

(f ⊕ s)(x) = max
y∈Ωs

x−y∈Ωf

{f(x− y) + s(y)} (1)

∙ Erosion is denoted with the symbol ⊖ and is used to ”shrink objects” in an image

(f ⊖ s)(x) = min
y∈Ωs

x+y∈Ωf

{f(x+ y)− s(y)}. (2)

∙ These definitions also apply to binary images, but we will take a simpler approach.
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background: set-theoretical notation

∙ A set is a collection of unique elements.

∙ If an element a is in a set A, we write it as a ∈ A (”a in A”).
∙ If an element a is not in a set A, we write it as a /∈ A (”a not in A”).
∙ ∅ denotes a set with no elements in it, and it is called the empty set.
∙ We often use curly braces to denote a set: A = {a, b, c}.
∙ We use symbol : and to mean ”where” or ”such that”:

∙ A = {x : x ∈ B, x < c} is the set of elements in B smaller than some constant c

6
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background: set-theoretical notation

∙ Ac is called the complement of A and contains all elements not in A.

∙ A \B is the set difference between A and B and contains all elements in A that are
not in B, A \B = {x ∈ A : x /∈ B}.

∙ A is a subset of B if all elements of A is also in B, and this is denoted as A ⊆ B.
∙ B is then a superset of A, which we write B ⊇ A.
∙ The union of two sets A and B is the set of all elements in A or B (or both). We write
this as A ∪B.

∙ The intersection of two sets A and B is the set of all elements in A and B. We write
this as A ∩B.

∙ For an element x ∈ Ω and some set A ⊆ Ω, let x+A be the resulting set when we
shift all elements in A by x

x+A = {x+ a : a ∈ A}. (3)
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binary images as sets

∙ Let f : Ω → {0, 1} be an image.

∙ In the case of a 2D image, Ω ⊂ Z2, and every pixel (x, y) in
f is in the set Ω, written (x, y) ∈ Ω.

∙ A binary image can be described by the set of foreground
pixels, which is a subset of Ω.

∙ Therefore, we might use notation and terms from set
theory when describing binary images, and operations
acting on them.

∙ The complement of a binary image f is

h(x, y) = f c(x, y)

=

{
0 if f(x, y) = 1,

1 if f(x, y) = 0.

(a) Contours of sets
A and B inside a
set U

(b) The complement
Ac (gray) of A
(white)

Figure 2: Set illustrations, gray is foreground, white is
background.
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binary images as sets

∙ The union of two binary images f and g is

h(x, y) = (f ∪ g)(x, y)

=

{
1 if f(x, y) = 1 or g(x, y) = 1,

0 otherwise.

∙ The intersection of two binary images f and g is

h(x, y) = (f ∩ g)(x, y)

=

{
1 if f(x, y) = 1 and g(x, y) = 1,

0 otherwise.

(a) Union of A and
B

(b) Intersection of A
and B

Figure 3: Set illustrations, gray is foreground, white is
background.
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fundamental operations



structuring element

∙ A structuring element in morphology is used to determine
the acting range of the operations.

∙ It is typically defined as a binary matrix where pixels
valued 0 are not acting, and pixels valued 1 are acting.

∙ When hovering the structuring element over an image, we
have three possible scenario for the structuring element
(or really the location of the 1’s in the structuring
element):

∙ It is not overlapping the image foreground (a miss).
∙ It is partly overlapping the image foreground (a hit).
∙ It is fully overlapping the image foreground (it fits).

Figure 4: A structuring element (top left) and a binary
image (top right). Bottom: the red misses, the blue
hits, and the green fits.
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origin of structuring element

Figure 5: Some structuring elements. The red pixel contour highlights the origin.

∙ The structuring element can have different shapes and sizes.

∙ We need to determine an origin.
∙ This origin denotes the pixel that (possibly) changes value in the result image.
∙ The origin may lay outside the structuring element.
∙ The origin should be highlighted, e.g. with a drawed square.
∙ We will assume the origin to be at the center pixel of the structuring element, and not
specify the location unless this is the case.
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erosion

∙ Let f : Ωf → {0, 1} be a 2D binary image.

∙ Let s : Ωs → {0, 1} be a 2D binary structuring element.
∙ Let x, y ∈ Z2 be 2D points for notational convenience.
∙ We then have 3 equivalent definitions of erosion.

∙ The one mentioned at the beginning of the lecture

(f ⊖ s)(x) = min
y∈Ω+

s
x+y∈Ωf

{f(x+ y)}, (4)

where Ω+
s is the subset of Ωs with foreground pixels.

∙ Place the s such that its origin overlaps with x, then

(f ⊖ s)(x) =

1 if s fits in f,

0 otherwise.
(5)

∙ Let F (g) be the set of all foreground pixels of a binary image g, then

F (f ⊖ s) = {x ∈ Ωf : F (x+Ω+
s ) ⊆ F (f)}. (6)

Note that the F () is often ommitted, as we often use set operations in binary morphology.
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erosion examples

(a) f (b) s1 (c) f ⊖ s1

(a) f (b) s2 (c) f ⊖ s2 14



effects of erosion

∙ Erosion shrinks foreground objects.

∙ Foreground holes are enlarged.
∙ Small (relative to the structuring element size) foreground ”peaks” are removed.
∙ Background ”fjords” are enlarged.
∙ The result is dependent on the structuring element.
∙ Larger structuring elements means more erosion.
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erosion examples

(a) f (b) s1 (c) f ⊖ s1

(a) f (b) s2 (c) f ⊖ s2 16



iterative erosion

∙ Larger structuring elements erodes more.

∙ Repeated erosion with a small structuring element is similar to one erosion with a
larger structuring element.

∙ If s2 is similar to s1 in shape, but twice as large, then

f ⊖ s2 ≈ (f ⊖ s1)⊖ s1 (7)
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iterative erosion examples

(a) f (b) s1 (c) (f ⊖ s1) ⊖ s1

(a) f (b) s2 (c) (f ⊖ s2) ⊖ s2 18



edge detection with erosion

∙ Erosion removes pixels along the boundary of the foreground object.

∙ We can locate the edges by subtracting the eroded image from the original

g = f − (f ⊖ s)

∙ The shape of the structuring element determines the connectivety of the countour.
That is, if the contour is connected using a 4 or 8 connected neighbourhood.
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edge detection with erosion: examples

(a) f (b) s1 (c) f ⊖ s1 (d) f − (f ⊖ s1)

(a) f (b) s2 (c) f ⊖ s2 (d) f − (f ⊖ s2)
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edge detection with erosion: examples

(a) f (b) s (c) f − (f ⊖ s)
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edge detection with erosion: examples

(a) f (b) s (c) f − (f ⊖ s)
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dilation

∙ Let f : Ωf → {0, 1} be a 2D binary image.

∙ Let s : Ωs → {0, 1} be a 2D binary structuring element.
∙ Let x, y ∈ Z2 be 2D points for notational convenience.
∙ We then have 3 equivalent definitions of dilation.

∙ The one mentioned at the beginning of the lecture

(f ⊕ s)(x) = max
y∈Ω+

s
x−y∈Ωf

{f(x− y)}, (8)

where Ω+
s is the subset of Ωs with foreground pixels.

∙ Place the s such that its origin overlaps with x, then

(f ⊕ s)(x) =

1 if s̃ hits f,
0 otherwise.

(9)

where s̃ is s rotated 180 degrees.
∙ Let F (g) be the set of all foreground pixels of a binary image g, then

F (f ⊕ s) = {x ∈ Ωf : F (x+Ω+
s ) ∩ F (f) ̸= ∅} (10)
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dilation examples

(a) f (b) s1 (c) f ⊕ s1

(a) f (b) s2 (c) f ⊕ s2 24



effects of dilation

∙ Dilation enlarges foreground objects.

∙ Dilation fills holes in the foreground (if the structuring element is large enough).
∙ Dilation smooths background ”fjords” in the foreground.
∙ The result is dependent on the structuring element.
∙ Larger structuring element gives larger dilation effect.
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dilation examples

(a) f (b) s1 (c) f ⊕ s1

(a) f (b) s2 (c) f ⊕ s2
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edge detection with dilation

∙ Dilation adds pixels along the boundary of the foreground object.

∙ We can locate the edges by subtracting the original image from the dilated image

g = (f ⊕ s)− f

∙ The shape of the structuring element determines the connectivety of the countour.
That is, if the contour is connected using a 4 or 8 connected neighbourhood.
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edge detection with dilation: examples

(a) f (b) s1 (c) f ⊕ s1 (d) (f ⊖ s1) − f

(a) f (b) s2 (c) f ⊕ s2 (d) (f ⊕ s2) − f
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edge detection with dilation: examples

(a) f (b) s (c) (f ⊕ s) − f
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edge detection with dilation: examples

(a) f (b) s (c) (f ⊕ s) − f
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region filling

∙ Region filling is a simple application of dilation.

∙ We can use it to extract connected foreground componets.
∙ Conversly, it can be used to extract holes in foreground regions. This can then be
used to fill said holes.
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extracting connected foreground components

∙ Assume you have a binary image f and a binary, square structuring element s.

∙ To extract all connected components (with 8-connectivity)
∙ Select a 2D point x on the structure.
∙ Let c0 be the same shape as f , and initialize it with 0 in every element, except at x, where
it gets value 1.

∙ Then, let
ck = (ck−1 ⊕ s) ∩ f, k = 1, . . . ,K

∙ Continue until no change is observed, that is, when ck = ck−1.
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connected component example

(a) f (b) c0 (c) c1 (d) c2 (e) c3

(f ) c4 (g) c5 (h) c6 (i) c7 (j) c8
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connected component example

(a) f (b) c0 (c) c1 (d) c2 (e) c3

(f ) c4 (g) c5 (h) c6 (i) c7 (j) c8
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extracting holes in foregorund regions

∙ This is almost identical to the connected component method.

∙ Assume you have a binary image f and a binary, square structuring element s.
∙ To extract all elements inside a foreground hole in f (with 4-connectivity)

∙ Select a 2D point x inside the hole.
∙ Let c0 be the same shape as f , and initialize it with 0 in every element, except at x, where
it gets value 1.

∙ Then, let
ck = (ck−1 ⊕ s) ∩ fc, k = 1, . . . ,K

∙ Continue until no change is observed, that is, ck = ck−1.

∙ Note that we used the complement of f here, f c.
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connected component example

(a) f (b) fc (c) c0

(d) c1 (e) c2 (f ) c3 (g) c4
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duality between dilation and erosion

∙ Dilation and erosion are dual
operations w.r.t. complements
and reflections (180 degree
rotation). That is, erosion and
dilation can be expressed as

f ⊕ s = (f c ⊖ s)
c

f ⊖ s = (f c ⊕ s)
c

∙ This means that dilation and
erosion can be performed by
the same procedure, given that
we can rotate the structuring
element and find the
complement of the binary
image.

(a) f

(b) s

(c) f ⊕ s

(a) fc

(b) s

(c) fc ⊖ s 37



some properties of dilation

∙ Dilation is commutative
f ⊕ s = s⊕ f.

Even if it is convention to place the image as the left operand and the structuring
element as the right operand, this is not necessary.

∙ Dilation is associative
f ⊕ (s1 ⊕ s2) = (f ⊕ s1)⊕ s2

If s = s1 ⊕ s2 we can utilize this separability for computational benefit. This is
especially true if s1 and s2 are one-dimensional. Example:

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

 =
[
1 1 1 1 1

]
⊕


1

1

1

1


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some properties of erosion

∙ Erosion is not commutative
f ⊖ s ̸= s⊖ f.

∙ Erosion is not associative, but successive erosion of the image f with s1 and s2 is
equal to the erosion of f with s1 dilated with s2

(f ⊖ s1)⊖ s2 = f ⊖ (s1 ⊕ s2).
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circular structuring elements on corners

∙ Both dilation and erosion with rectangular structuring
elements preserves the shape of corners.

∙ Dilation of concave corners with circular structuring
elements preserves the shape of the corners.

∙ Dilation of convex corners with circular structuring
elements rounds the shape of the corners.

∙ The opposite is true for erosion
∙ Erosion of concave corners give rounded corners.
∙ Erosion of convex corners preserves the shape.

Figure 29
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more on duality

∙ Erosion can be thought of finding the positions where the structuring element fits
the foreground.

∙ Dilation can be thought of finding the positions where the (rotated) structure elemnt
fits the background.

∙ This duality implies the behaviour on corners discussed in the previous slide.
∙ Since erosion of concave corners with a circular structuring element rounds the
corners, dilation of convex corners will round the corners when using the same
circular structure element.

∙ Note that a concave foreground corner is a convex background corner, and vice versa.
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∙ Since erosion of concave corners with a circular structuring element rounds the
corners, dilation of convex corners will round the corners when using the same
circular structure element.

∙ Note that a concave foreground corner is a convex background corner, and vice versa.
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composite operations



morphological opening

∙ Erosion of an image removes all regions that cannot fit the structuring element, and
shrinks all other regions.

∙ We can then dilate the result of the erosion, with this
∙ the regions that where shrinked are (approximately) restored.
∙ the regions too small to survive an erosion, are not restored.

∙ This is morphological opening

f ◦ s = (f ⊖ s)⊕ s

∙ The name stems from that this operation can provide an opening (a space) between
regions that are connected through thin ”bridges”, almost without affecting the
original shape of the larger regions.

∙ Using erosion only will also open these bridges, but the shape of the larger regions
is also altered.

∙ The size and shape of the structuring element is vital.
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geometrical interpretation of opening

∙ Imagine translating the structuring element over the image such that it always fits
inside the foreground regions.

∙ Do this wherever possible
∙ An opening is then the regions covered by the structuring element when doing the
above operation.

∙ The opening operator is idempotent

(f ◦ s) ◦ s = f ◦ s
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example: opening

(a) f (b) s (c) f ◦ s

Figure 30: Morphological opening of f with s.
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morphological closing

∙ Dilation of an image expands foreground regions and fills small (relative to the
structuring element) holes in the foreground.

∙ We can then erode the result of the dilation, then
∙ the regions that where expanded are (approximately) restored.
∙ the holes that where filled, are not opened again.

∙ This is morphological closing

f • s = (f ⊕ s)⊖ s

∙ The name stems from that this operation can close small gaps between foreground
regions, without altering the larger foreground shapes too much.

∙ Using dilation only will also close these gaps, but the shape of the larger regions is
also altered.

∙ The size and shape of the structuring element is vital.
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geometrical interpretation of closing

∙ We can use the same image as for morphological opening.

∙ Imagine translating the structuring element over the image such that it always is
outside foreground regions.

∙ Do this wherever possible
∙ A closing is then the regions not covered by the structuring element when doing the
above operation.

∙ The opening operator is also idempotent

(f • s) • s = f • s
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example: closing

(a) f (b) s (c) f • s

Figure 31: Morphological opening of f with s.
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duality

∙ Opening and closing are dual
operations w.r.t. complements
and rotation

f ◦ s = (f c • s)c

f • s = (f c ◦ s)c

∙ This means that closing can be
performed by complementing
the image, opening the
complement by the rotated
structuring element, and
complement the result. The
corresponding is true for
opening.

(a) f

(b) s

(c) f ◦ s

(a) fc

(b) s

(c) fc • s 49



magnitude relations

∙ Dilation and closing are extending operations, meaning that foreground pixels are
added to the image.

∙ Erosion and opening are narrowing operations, meaning that foreground pixels are
removed.

∙ For a binary image f and a binary structuring element s, we have that

(f ⊖ s)(x) ≤ (f ◦ s)(x) ≤ f(x) ≤ (f • s)(x) ≤ (f ⊕ s)(x)

∙ On a similar note, if F (g) is the set of foreground pixels in g,

F (f ⊖ s) ⊆ F (f ◦ s) ⊆ F (f) ⊆ F (f • s) ⊆ F (f ⊕ s)
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example: noise removal

Figure 34: Opening with a 5 × 5 square structuring element
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example: form separation

Figure 35: Opening with a circular structuring element.
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example: filtering by closing

Figure 36: Closing with a 3 × 3 quadratic structuring element
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example: filtering by opening and closing

Figure 37: G&W Figure 9.11. Closing the opening of an image to remove noise.
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hit-or-miss transformation

∙ Let f be a binary image as usual, but define s to be a tuple of two structuring
elements s = (shit, smiss).

∙ The hit-or-miss transformation is then defined as

f ⊛ s = (f ⊖ shit) ∩ (f c ⊖ smiss),

∙ A foreground pixel in the out-image is only achieved if
∙ shit fits the foreground around the pixel, and
∙ smiss fits the background around the pixel.

∙ This can be used in several applications, including
∙ finding certain patterns in an image,
∙ removing single pixels,
∙ thinning and thickening foreground regions.
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hit-or-miss example

(a) f (b) shit (c) f ⊖ shit

(a) fc (b) smiss (c) fc ⊖ smiss

Figure 40: f ⊛ s 56



morphological thinning

∙ Morphological thinning of an image f with a structuring element tuple s, is defined
as

f ⊗ s = f \ (f ⊛ s)

= f ∩ (f ⊛ s)c

∙ In order to thin a foreground region, we perform a sequential thinning with multiple
structuring elements s1, . . . , s8, which, when defined with the hit-or-miss notation
above are

shit1 =

0 0 0

0 1 0

1 1 1

, smiss
1 =

1 1 1

0 0 0

0 0 0

.

shit2 =

0 0 0

1 1 0

1 1 0

, smiss
2 =

0 1 1

0 0 1

0 0 0

.

Following this pattern, where si+1 is rotated clockwise w.r.t. si, we continue this until

shit8 =

0 0 0

0 1 1

0 1 1

, smiss
8 =

1 1 0

1 0 0

0 0 0

.
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morphological thinning

∙ With these previously defined structuring elements, we apply the iteration

d0 = f

dk = dk−1 ⊗ {s1, · · · , s8}
= (· · · ((dk−1 ⊗ s1)⊗ s2) · · · )⊗ s8

for K iterations until dK = dK−1 and we terminate with dK as the result of the
thinning.

∙ In the same manner, we define the dual operator thickening

f ⊙ s = f ∪ (f ⊛ s),

which also can be used in a sequential manner analogous to thinning.
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thinning example

(a) d0 = f (b) d01 = d0 \ (d0 ⊛ s1) (c) d02 = d01 \ (d01 ⊛ s2)

(d) d03 = d02 \ (d02 ⊛ s3) (e) d04 = d03 \ (d03 ⊛ s4) (f ) d05 = d04 \ (d04 ⊛ s5)

(g) d06 = d05 \ (d05 ⊛ s6) (h) d07 = d06 \ (d06 ⊛ s7) (i) d08 = d07 \ (d07 ⊛ s8)
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thinning example

(a) d1 = d0 (b) d11 = d1 \ (d1 ⊛ s1) (c) d12 = d11 \ (d11 ⊛ s2)

(d) d13 = d12 \ (d12 ⊛ s3) (e) d14 = d13 \ (d13 ⊛ s4) (f ) d15 = d14 \ (d14 ⊛ s5)

(g) d16 = d15 \ (d15 ⊛ s6) (h) d17 = d16 \ (d16 ⊛ s7) (i) d18 = d17 \ (d17 ⊛ s8)
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thinning example

(a) d2 = d1 (b) d21 = d2 \ (d2 ⊛ s1) (c) d22 = d21 \ (d21 ⊛ s2)

(d) d23 = d22 \ (d22 ⊛ s3) (e) d24 = d23 \ (d23 ⊛ s4) (f ) d25 = d24 \ (d24 ⊛ s5)

(g) d26 = d25 \ (d25 ⊛ s6) (h) d27 = d26 \ (d26 ⊛ s7) (i) d28 = d27 \ (d27 ⊛ s8)
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summary

∙ Binary morphology
∙ Structuring element
∙ Duality
∙ Operations

∙ Erosion
∙ Dilation
∙ Opening
∙ Closing
∙ Hit-or-miss
∙ Thinning

∙ Some applications
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Questions?

63


	Introduction
	Fundamental operations
	Composite operations

