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today’s lecture

∙ Coding and compression
∙ Information theory
∙ Shannon-Fano coding
∙ Huffman coding
∙ Arithmetic coding
∙ Difference transform
∙ Run-length coding
∙ Lempel-Ziv-Welch coding
∙ Lossy JPEG compression

∙ Binary morphology
∙ Fundamentals: Structuring element, erosion and dilation
∙ Opening and closing
∙ Hit-or-miss transform
∙ Morphological thinning
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compression and decompression

Figure 1: Compression and decompression pipeline

∙ We would like to compress our data, both to reduce storage and transmission load.
∙ In compression, we try to create a representation of the data which is smaller in size,
while preserving vital information. That is, we throw away redundant information.

∙ The original data (or an approximated version) can be retrieved through
decompression.
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compression

Figure 2: Three steps of compression

We can group compression in to three steps:
∙ Transformation: A more compact image representation.

∙ Qunatization: Representation approximation.
∙ Coding: Transformation from one set of symbols to another.

∙ Encoding: Coding from an original format to some other format. E.g. encoding a digital
image from raw numbers to JPEG.

∙ Decoding: The reverse process, coding from some format to the original. E.g. decoding a
JPEG image back to raw numbers.
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lossy and lossless compression

Compression can either be lossless or lossy. There exists a number of methods for both
types.

Lossless: We are able to perfectly reconstruct the original image.
Lossy: We can only reconstruct the original image to a certain degree (but not

perfect).
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redundancy

∙ We can use a different amount of data on the same signal.

∙ E.g. the signal 13
∙ ISO 8859-1 (Latin-1): 16 bits: 8 bits for 1 (at 0x31) and 8 bits for 3 (at 0x33).
∙ 8-bit natural binary encoding: 8 bits: 00001101
∙ 4-bit natural binary encoding: 4 bits: 1101

∙ Redundancy: What can be removed from the data without loss of (relevant)
information.

∙ In compression, we want to remove redundant bits.
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different types of redundancy

∙ Psychovisual redundancy
∙ Information that we cannot percieve.
∙ Can be compressed by e.g. subsampling or by reducing the number of bits per pixel.

∙ Inter-pixel temporal redundancy
∙ Correlation between successive images in a sequence.
∙ A sequence can be compressed by only storing some frames, and then only differences
for the rest of the sequence.

∙ Inter-pixel spatial redundancy
∙ Correlation between neighbouring pixels within an image.
∙ Can be compressed by e.g. run-length methods.

∙ Coding redundancy
∙ Information is not represented optimally by the symbols in the code.
∙ This is often measured as the difference between average code length and some
theoretical minimum code length.
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compression rate and redundancy

∙ The compression rate is defined as the ratio between the uncompressed size and
compressed size

Compression rate =
Uncompressed size
Compressed size

or as the ratio between the mean number of bits per symbol in the compressed and
uncompressed signal.

∙ Space saving is defined as the reduction in size relative to the uncompressed size,
and is given as

Space savings = 1− Compressed size
Unompressed size

∙ Example: An 8-bit 512× 512 image has an uncompressed size of 256 kiB, and a size of
64 kiB after compression.

∙ Compression rate: 4
∙ Space saving: 3/4
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expected code length

∙ The expected length Lc of a source code c for a random variable X with pmf. pX is
defined as

Lc =
∑
x∈X

pX(x)lc(x)

where lc(x) is the length of the codeword assigned to x in this source code.

∙ Example: Let X be a random variable taking values in {1, 2, 3, 4} with probabilities
defined by pX below.

∙ Let us encode this with a variable length source code cv , and a source code ce with
equal length codewords.

pX(1) = 1
2 cv(1) = 0 ce(1) = 00

pX(2) = 1
4 cv(2) = 10 ce(2) = 01

pX(3) = 1
8 cv(3) = 110 ce(3) = 10

pX(4) = 1
8 cv(4) = 111 ce(4) = 11

∙ Expected length of the variable length coding: Lcv = 1.75 bits.
∙ Expected length of the equal length coding: Lce = 2 bits.
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information content

∙ We use information content (aka self-information or surprisal) to measure the level
of information in an event X .

∙ The information content IX(x) (measured in bits) of an event x is defined as

IX(x) = log2
1

pX(x)
.

∙ It can also be measured in nats

IX(x) = loge
1

pX(x)
,

that is, with the natural logarithm, or in hartleys

IX(x) = log10
1

pX(x)
.

∙ If an event X takes value x with probability 1, the information content IX(x) = 0.
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entropy

∙ The entropy of a random variable X taking values x ∈ X , and with pmf. pX , is
defined as

H(X) =
∑
x∈X

pX(x)IX(x)

= −
∑
x∈X

pX(x) log pX(x),

and is thus the expected information content in X , measured in bits (unless another
base for the logarithm is explicitly stated).

∙ We use the convention that x log(x) = 0 when x = 0.
∙ The entropy of a signal (a collection of events) gives a lower bound on how compact
the sequence can be encoded (if every event is encoded separately).

∙ The entropy of a fair coin toss is 1 bit (since −2 1
2 log2 1

2 = 1)
∙ The entropy of a fair dice toss is ≈2.6 bit (since −6 1

6 log2 1
6 ≈ 2.6)
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estimating the probability mass function

∙ We can estimate the probability mass function with the normalized histogram.

∙ For a signal of length n with symbols taking values in the alphabeth {s0, . . . , sm−1},
let ni be the number of occurances of si in the signal, then the normalized
histogram value for symbol si is

pi =
ni

n
.

∙ If one assume that the values in the signal are independent realizations of an
underlying random variable, then pi is an estimate on the probability that the
variable is si.
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shannon-fano coding

∙ A simple method that produces an instantaneous code.

∙ The resulting is quite compact (but not optimal).
∙ Algorithm that produces a binary Shannon-Fano code (with alphabeth {0, 1}):

1. Sort the symbols xi of the signal that we want to code by probability of occurance.
2. Split the symbols into two parts with approximately equal accumulated probability.

∙ One group is assigned the symbol 0, and the other the symbol 1.
∙ Do this step recursively (that is, do this step on every subgroup), until the group only contain
one element.

3. The result is a binary tree with the symbols that are to be encoded in the leaf nodes.
4. Traverse the tree from root to the leaf nodes and record the sequence of symbols in

order to produce the corresponding codeword.
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shannon-fano example

Two different encodings of the sequence ”HALLO”.

x pX(x) c(x) l(x)

L 2/5 0 1
H 1/5 10 2
A 1/5 110 3
O 1/5 111 3

c(HALLO) = 1011000111, with length 10 bits.

x pX(x) c(x) l(x)

L 2/5 00 2
H 1/5 01 2
A 1/5 10 2
O 1/5 11 2

c(HALLO) = 0110000011, with length 10 bits.
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huffman coding

∙ An instantaneous coding algorithm.

∙ Optimal in the sense that it achieves minimal coding redundancy.
∙ Algorithm for encoding a sequence of n symbols with a binary Huffman code and
alphabeth {0, 1}:

1. Sort the symbols by decreasing probability.
2. Merge the two least likely symbols to a group and give the group a probability equal to

the sum of the probabilities of the members in the group. Sort the new sequence by
decreasing probability.

3. Repeat step 2. until there are only two groups left.
4. Represent the merging as a binary tree, and assign 0 to the left branch and 1 to the right

branch.
5. Every symbol in the original sequence is now at a leaf node. Traverse the tree from the

root to the corresponding leaf node, and append the symbols from the traversal to
create the codeword.
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huffman coding: example

The six most common letters in the english
language, and their relative occurance
frequency (normslized within this selection),
is given in the table below. The resulting
Huffman source code is given as c.

x p(x) c(x)

a 0.160 000
e 0.248 10
i 0.137 010
n 0.131 011
o 0.146 001
t 0.178 11

Figure 3: Huffman procedure example with resulting binary tree.
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huffman coding: example

∙ The expected codeword length in the previous example is

L =
∑
i

lipi

= 3 · 0.160 + 2 · 0.248 + 3 · 0.137 + 3 · 0.131 + 3 · 0.146 + 2 · 0.178
= 2.574

∙ And the entropy is
H = −

∑
i

pi log2 pi

≈ 2.547

∙ Thus, the coding redundancy is L−H ≈ 0.027.
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ideal and actual code-word length

∙ For an optimal code, the expected codeword length L must be equal to the entropy∑
x

p(x)l(x) = −
∑
x

p(x) log2 p(x)

∙ That is, l(x) = log2(1/p(x)), which is the information content of the event x.

Figure 4: Ideal and actual codeword length from example in fig. 3
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when does huffman coding not give any coding redundancy

∙ The ideal codeword length is

l(x) = log2(1/p(x))

∙ Since we only deal with integer codeword lengths, this is only possible when

p(x) =
1

2k

for some integer k.
∙ Example

x x1 x2 x3 x4 x5 x6

p(x) 1
2

1
4

1
8

1
16

1
32

1
64

c(x) 0 10 110 1110 11110 11111

∙ In this example L = H = 1.9375, that is, no coding redundancy.
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arithmetic coding

∙ Lossless compression method.

∙ Variable code length, codes more probable symbols more compactly.
∙ Contrary to Shannon-Fano coding and Huffman coding, which codes symbol by
symbol, arithmetic coding encodes the entire signal to one number d ∈ [0, 1).

∙ Same expected codeword length as Huffman code.
∙ Can achieve shorter codewords for the entire sequence than Huffman code. This is
because one is not limited to integer codewords for each symbol.
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arithmetic coding: encoding overview

∙ The signal is a string of symbols x, where the symbols are taken from some
alphabeth X .

∙ As usual, we model the symbols as realizations of a discrete random variable X with
an associated probability mass function pX .

∙ For each symbol in the signal, we use the pmf. to associate a unique interval with
the part of the signal we have processed so far.

∙ At the end, when the whole signal is processed, we are left with a decimal interval
which is unique to the string of symbols that is our signal.

∙ We then find the number within this decimal with the shortest binary representation,
and use this as the encoded signal.
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arithmetic encoding: example

∙ Suppose we have an alphabeth {a1, a2, a3, a4} with associated pmf.
pX = [0.2, 0.2, 0.4, 0.2].

∙ We want to encode the sequence a1a2a3a3a4.
Step-by-step solution, current interval is initialized to
[0, 1).

Symbol Interval Sequence Interval

a1 [0.0, 0.2) a1 [0.0, 0.2)

a2 [0.2, 0.4) a1a2 [0.04, 0.08)

a3 [0.4, 0.8) a1a2a3 [0.056, 0.072)

a3 [0.4, 0.8) a1a2a3a3 [0.0624, 0.0688)

a4 [0.8, 1.0) a1a2a3a3a4 [0.06752, 0.0688)
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arithmetic decoding

∙ Given an encoded signal b1b2b3 · · · bk , we first find the decimal representation

d =

k∑
n=1

bn

(
1

2

)n

∙ Similar to what we did in the encoding, we define a list of interval edges based on
the pmf q = [0, pX(x1), pX(x1) + pX(x2), . . . ,

∑k
i=1 pX(xk), . . .]

1. See what interval the decimal number lies in, set this as the current interval.
2. Decode the symbol corresponding to this interval (this is found via the alphabeth and q).
3. Scale the q to lie within the current interval.
4. Do step 1 to 3 until termination.

∙ Termination:
∙ Define a eod symbol (end of data), and stop when this is decoded. Note that this will
also need an associated probability in the model.

∙ Or, only decode a predefined number of symbols.

23



arithmetic decoding

∙ Given an encoded signal b1b2b3 · · · bk , we first find the decimal representation

d =

k∑
n=1

bn

(
1

2

)n

∙ Similar to what we did in the encoding, we define a list of interval edges based on
the pmf q = [0, pX(x1), pX(x1) + pX(x2), . . . ,

∑k
i=1 pX(xk), . . .]

1. See what interval the decimal number lies in, set this as the current interval.
2. Decode the symbol corresponding to this interval (this is found via the alphabeth and q).
3. Scale the q to lie within the current interval.
4. Do step 1 to 3 until termination.

∙ Termination:
∙ Define a eod symbol (end of data), and stop when this is decoded. Note that this will
also need an associated probability in the model.

∙ Or, only decode a predefined number of symbols.

23



arithmetic decoding

∙ Given an encoded signal b1b2b3 · · · bk , we first find the decimal representation

d =

k∑
n=1

bn

(
1

2

)n

∙ Similar to what we did in the encoding, we define a list of interval edges based on
the pmf q = [0, pX(x1), pX(x1) + pX(x2), . . . ,

∑k
i=1 pX(xk), . . .]

1. See what interval the decimal number lies in, set this as the current interval.
2. Decode the symbol corresponding to this interval (this is found via the alphabeth and q).
3. Scale the q to lie within the current interval.
4. Do step 1 to 3 until termination.

∙ Termination:
∙ Define a eod symbol (end of data), and stop when this is decoded. Note that this will
also need an associated probability in the model.

∙ Or, only decode a predefined number of symbols.

23



decoding: example

∙ Alphabeth: {a, b, c}. pX = [0.6, 0.2, 0.2]. q = [0.0, 0.6, 0.8, 1.0]

∙ Signal to decode: 10001
∙ First, we find that 0.100012 = 0.5312510

∙ Then we continue decoding symbol for symbol until termination:

[cmin, cmax) qnew Symbol Sequence

[0.0, 1.0) [0.0, 0.6, 0.8, 1.0) a a

[0.0, 0.6) [0.0, 0.36, 0.48, 0.6) c ac

[0.48, 0.6) [0.48, 0.552, 0.576, 0.6) a aca

[0.48, 0.552) [0.48, 0.5232, 0.5376, 0.552) b acab

[0.5232, 0.5376) [0.5232, 0.53184, 0.53472, 0.5376) a acaba
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coding and compression ii



difference transform

∙ Horizontal pixels have often quite similar intensity values.

∙ Transform each pixelvalue f(x, y) as the difference
between the pixel at (x, y) and (x, y − 1).

∙ That is, for an m× n image f , let g[x, 0] = f [x, 0], and

g[x, y] = f [x, y]− f [x, y − 1], y ∈ {1, 2, . . . , n− 1} (1)

for all rows x ∈ {0, 1, . . . ,m− 1}.
∙ Note that for an image f taking values in [0, 2b − 1], values
of the transformed image g take values in
[−(2b − 1), 2b − 1].

∙ This means that we need to use b+ 1 bits for each g(x, y)

if we are going to use equal-size codeword for every value.
∙ Often, the differences are close to 0, which means that
natural binary coding of the differences are not optimal.

(a) Original (b) Graylevel intensity histogram

Figure 5: H ≈ 7.45 =⇒ cr ≈ 1.1

(a) Difference
transformed (b) Graylevel intensity histogram

Figure 6: H ≈ 5.07 =⇒ cr ≈ 1.6
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run-length transform

∙ Often, images contain objects with similar intensity values.

∙ Run-length transform use neighbouring pixels with the same value.
∙ Note: This requires equality, not only similarity.
∙ Run-length transform is compressing more with decreasing complexity.

∙ The run-length transform is reversible.
∙ Codes sequences of values into sequences of tuples: (value, run-length).
∙ Example:

∙ Values (24 numbers): 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 7, 7, 7, 7, 7, 7.
∙ Code (8 numbers): (3, 6), (5, 10), (4, 2), (7, 6).

∙ The coding determines how many bits we use to store the tuples.
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run-length transform in binary images

∙ In a binary image, we can ommit the value in coding. As long as we know what value
is coded first, the rest have to be alternating values.

∙ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1

∙ 5, 6, 2, 3, 5, 4

∙ The histogram of the run-lengths is often not flat, entropy-coding should therefore
be used to code the run-length sequence.
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lempel-ziv-welch coding

∙ A member of the LZ* family of compression schemes.
∙ Utilizes patterns in the message by looking at symbol occurances, and therefore
mostly reduces inter sample redundancy.

∙ Maps one symbol sequence to one code.

∙ Based on a dictionary between symbol sequence and code that is built on the fly.
∙ This is done both in encoding and decoding.
∙ The dictionary is not stored or transmitted.

∙ The dictionary is initialized with an alphabeth of symbols of length one.
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lzw encoding example

∙ Message: ababcbababaaaaabab#
∙ Initial dictionary: { #:0, a:1, b:2, c:3 }
∙ New dictionary entry: current string plus next unseen symbol

Current New dict
Message string Codeword entry

ababcbababaaaaabab# a 1 ab:4
ababcbababaaaaabab# b 2 ba:5
ababcbababaaaaabab# ab 4 abc:6
ababcbababaaaaabab# c 3 cb:7
ababcbababaaaaabab# ba 5 bab:8
ababcbababaaaaabab# bab 8 baba:9
ababcbababaaaaabab# a 1 aa:10
ababcbababaaaaabab# aa 10 aaa:11
ababcbababaaaaabab# aa 10 aab:12
ababcbababaaaaabab# bab 8 bab#:13
ababcbababaaaaabab# # 0

∙ Encoded message: 1,2,4,3,5,8,1,10,10,8,0.
∙ Assuming original bps = 8, and coded bps = 4, we achieve a compression rate of

cr =
8 · 19
4 · 11

≈ 3.5 (2)
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lzw decoding example

∙ Encoded message: 1,2,4,3,5,8,1,10,10,8,0
∙ Initial dictionary: { #:0, a:1, b:2, c:3 }
∙ New dictionary entry: current string plus first symbol in next string

Current New dict entry
Message string Final Proposal

1,2,4,3,5,8,1,10,10,8,0 a a?:4
1,2,4,3,5,8,1,10,10,8,0 b ab:4 b?:5
1,2,4,3,5,8,1,10,10,8,0 ab ba:5 ab?:6
1,2,4,3,5,8,1,10,10,8,0 c abc:6 c?:7
1,2,4,3,5,8,1,10,10,8,0 ba cb:7 ba?:8
1,2,4,3,5,8,1,10,10,8,0 bab bab:8 bab?:9
1,2,4,3,5,8,1,10,10,8,0 a baba:9 a?:10
1,2,4,3,5,8,1,10,10,8,0 aa aa:10 aa?:11
1,2,4,3,5,8,1,10,10,8,0 aa aaa:11 aa?:12
1,2,4,3,5,8,1,10,10,8,0 bab aab:12 bab?:13
1,2,4,3,5,8,1,10,10,8,0 # bab#:13

Decoded message: ababcbababaaaaaabab#
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lzw compression, summary

∙ The LZW codes are normally coded with a natural binary coding.

∙ Typical text files are usually compressed with a factor of about 2.
∙ LZW coding is used a lot

∙ In the Unix utility compress from 1984.
∙ In the GIF image format.
∙ An option in the TIFF and PDF format.

∙ Experienced a lot of negative attention because of (now expired) patents. The PNG
format was created in 1995 to get around this.

∙ The LZW can be coded further (e.g. with Huffman codes).
∙ Not all created codewords are used.
∙ We can limit the number of generated codewords.

∙ Setting a limit on the number of codewords, and deleting old or seldomly used
codewords.

∙ Both the encoder and decoder need to have the same rules for deleting.
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lossy jpeg compression: start

∙ Each image channel is partitioned into blocks of 8× 8 piksels, and each block can be
coded separately.

∙ For an image with 2b intensity values, subtract 2b−1 to center the image values
around 0 (if the image is originally in an unsigned format).

∙ Each block undergoes a 2D DCT. With this, most of the information in the 64 pixels is
located in a small area in the Fourier space.

Figure 7: Example block, subtraction by 128, and 2D DCT.
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lossy jpeg compression: loss of information

∙ Each of the frequency-domain blocks are then point-divided by a quantization
matrix.

∙ The result is rounded off to the nearest integer.
∙ his is where we lose information, but also why we are able to achieve high
compression rates.

∙ This result is compressed by a coding method, before it is stored or transmitted.
∙ The DC and AC components are treated differently.

Figure 8: Divide the DCT block (left) with the quantization matrix (middle) and round to nearest integer (right)
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lossy jpeg compression: ac-components (sequential modes)

1. The AC-components are zig-zag scanned:
∙ The elements are ordered in a 1D sequence.
∙ The absolute value of the elements will mostly
descend through the sequence.

∙ Many of the elements are zero, especially at the
end of the sequence.

2. A zero-based run-length transform is performed
on the sequence.

3. The run-length tuples are coded by Huffman or
arithmetic coding.

∙ The run-length tuple is here (number of 0’s,
number of bits in ”non-0”).

∙ Arithmetic coding often gives 5− 10% better
compression.

Figure 9: Zig-zag gathering of AC-components into a sequence.
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lossy jpeg compression: dc-component

1. The DC-components are gathered from all the blocks in all the image channels.

2. These are correlated, and are therefore difference-transformed.
3. The differences are coded by Huffman coding or arithmetic coding.

∙ More precise: The number of bits in each difference is entropy coded.
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lossy jpeg decompression: reconstruction of frequency-domain blocks

∙ The coding part (Huffman- and arithmetic coding) is reversible, and gives the AC
run-length tuples and the DC differences.

∙ The run-length transform and the difference transform are also reversible, and gives
the scaled and quantized 2D DCT coefficients

∙ The zig-zag transform is also reversible, and gives (together with the restored DC
component) an integer matrix.

∙ This matrix is multiplied with the quantization matrix in order to restore the sparse
frequency-domain block.

Figure 10: Multiply the quantized DCT components (left) with the quantization matrix (middle) to produce the sparse frequency-domain block (right).
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lossy jpeg decompression: quality of restored dct image

Figure 11: Comparison of the original 2D DCT components (left) and the restored (right)

∙ The restored DCT image is not equal to the original.

∙ But the major features are preserved
∙ Numbers with large absolute value in the top left corner.
∙ The components that was near zero in the original, are exactly zero in the restored
version.
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lossy jpeg decompression: inverse 2d dct

∙ We do an inverse 2D DCT on the sparse DCT component matrix.

f(x, y) =
2√
mn

m∑
u=0

n∑
v=0

c(u)c(v)F (u, v) cos
(
(2x+ 1)uπ

2m

)
cos

(
(2y + 1)vπ

2n

)
, (3)

where

c(a) =

 1√
2

if a = 0,

1 otherwise.
(4)

∙ We have then a restored image block which should be approximately equal to the
original image block.

Figure 12: A 2D inverse DCT on the sparse DCT component matrix (left) produces an approximate image block (right)
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lossy jpeg decompression: approximation error

Figure 13: The difference (right) between the original block (left) and the result from the JPEG compression and decompression (middle).

∙ The differences between the original block and the restored are small.

∙ But they are, however, not zero.
∙ The error is different on neighbouring pixels.
∙ This is especially true if the neighbouring pixels belong to different blocks.
∙ The JPEG compression/decompression can therefore introduce block artifacts, which
are block patterns in the reconstructed image (due to these different errors).
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block artifacts and compression rate

(a) Compressed (b) Difference (c) Detail

(d) Compressed (e) Difference (f ) Detail

Figure 14: Top row: compression rate = 12.5. Bottom row: compression rate = 32.7 41



morphology on binary images



binary images as sets

∙ Let f : Ω → {0, 1} be an image.

∙ In the case of a 2D image, Ω ⊂ Z2, and every pixel (x, y) in
f is in the set Ω, written (x, y) ∈ Ω.

∙ A binary image can be described by the set of foreground
pixels, which is a subset of Ω.

∙ Therefore, we might use notation and terms from set
theory when describing binary images, and operations
acting on them.

∙ The complement of a binary image f is

h(x, y) = f c(x, y)

=

{
0 if f(x, y) = 1,

1 if f(x, y) = 0.

(a) Contours of sets
A and B inside a
set U

(b) The complement
Ac (gray) of A
(white)

Figure 15: Set illustrations, gray is foreground, white
is background.
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binary images as sets

∙ The union of two binary images f and g is

h(x, y) = (f ∪ g)(x, y)

=

{
1 if f(x, y) = 1 or g(x, y) = 1,

0 otherwise.

∙ The intersection of two binary images f and g is

h(x, y) = (f ∩ g)(x, y)

=

{
1 if f(x, y) = 1 and g(x, y) = 1,

0 otherwise.

(a) Union of A and
B

(b) Intersection of A
and B

Figure 16: Set illustrations, gray is foreground, white
is background.
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structuring element

∙ A structuring element in morphology is used to determine
the acting range of the operations.

∙ It is typically defined as a binary matrix where pixels
valued 0 are not acting, and pixels valued 1 are acting.

∙ When hovering the structuring element over an image, we
have three possible scenario for the structuring element
(or really the location of the 1’s in the structuring
element):

∙ It is not overlapping the image foreground (a miss).
∙ It is partly overlapping the image foreground (a hit).
∙ It is fully overlapping the image foreground (it fits).

Figure 17: A structuring element (top left) and a
binary image (top right). Bottom: the red misses, the
blue hits, and the green fits.
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origin of structuring element

Figure 18: Some structuring elements. The red pixel contour highlights the origin.

∙ The structuring element can have different shapes and sizes.

∙ We need to determine an origin.
∙ This origin denotes the pixel that (possibly) changes value in the result image.
∙ The origin may lay outside the structuring element.
∙ The origin should be highlighted, e.g. with a drawed square.
∙ We will assume the origin to be at the center pixel of the structuring element, and not
specify the location unless this is the case.

46



origin of structuring element

Figure 18: Some structuring elements. The red pixel contour highlights the origin.

∙ The structuring element can have different shapes and sizes.
∙ We need to determine an origin.

∙ This origin denotes the pixel that (possibly) changes value in the result image.
∙ The origin may lay outside the structuring element.
∙ The origin should be highlighted, e.g. with a drawed square.
∙ We will assume the origin to be at the center pixel of the structuring element, and not
specify the location unless this is the case.

46



erosion

∙ Let f : Ωf → {0, 1} be a 2D binary image.

∙ Let s : Ωs → {0, 1} be a 2D binary structuring element.
∙ Let x, y ∈ Z2 be 2D points for notational convenience.
∙ We then have 3 equivalent definitions of erosion.

∙ The one mentioned at the beginning of the lecture

(f ⊖ s)(x) = min
y∈Ω+

s
x+y∈Ωf

{f(x+ y)}, (5)

where Ω+
s is the subset of Ωs with foreground pixels.

∙ Place the s such that its origin overlaps with x, then

(f ⊖ s)(x) =

1 if s fits in f,

0 otherwise.
(6)

∙ Let F (g) be the set of all foreground pixels of a binary image g, then

F (f ⊖ s) = {x ∈ Ωf : F (x+Ω+
s ) ⊆ F (f)}. (7)

Note that the F () is often ommitted, as we often use set operations in binary morphology.
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erosion examples

(a) f (b) s1 (c) f ⊖ s1

(a) f (b) s2 (c) f ⊖ s2 48



edge detection with erosion

∙ Erosion removes pixels along the boundary of the foreground object.

∙ We can locate the edges by subtracting the eroded image from the original

g = f − (f ⊖ s)

∙ The shape of the structuring element determines the connectivety of the countour.
That is, if the contour is connected using a 4 or 8 connected neighbourhood.
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edge detection with erosion: examples

(a) f (b) s (c) f − (f ⊖ s)
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edge detection with erosion: examples

(a) f (b) s (c) f − (f ⊖ s)
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dilation

∙ Let f : Ωf → {0, 1} be a 2D binary image.

∙ Let s : Ωs → {0, 1} be a 2D binary structuring element.
∙ Let x, y ∈ Z2 be 2D points for notational convenience.
∙ We then have 3 equivalent definitions of dilation.

∙ The one mentioned at the beginning of the lecture

(f ⊕ s)(x) = max
y∈Ω+

s
x−y∈Ωf

{f(x− y)}, (8)

where Ω+
s is the subset of Ωs with foreground pixels.

∙ Place the s such that its origin overlaps with x, then

(f ⊕ s)(x) =

1 if s̃ hits f,
0 otherwise.

(9)

where s̃ is s rotated 180 degrees.
∙ Let F (g) be the set of all foreground pixels of a binary image g, then

F (f ⊕ s) = {x ∈ Ωf : F (x+Ω+
s ) ∩ F (f) ̸= ∅} (10)
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dilation examples

(a) f (b) s1 (c) f ⊕ s1

(a) f (b) s2 (c) f ⊕ s2 53



edge detection with dilation

∙ Dilation adds pixels along the boundary of the foreground object.

∙ We can locate the edges by subtracting the original image from the dilated image

g = (f ⊕ s)− f

∙ The shape of the structuring element determines the connectivety of the countour.
That is, if the contour is connected using a 4 or 8 connected neighbourhood.
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edge detection with dilation

∙ Dilation adds pixels along the boundary of the foreground object.
∙ We can locate the edges by subtracting the original image from the dilated image

g = (f ⊕ s)− f

∙ The shape of the structuring element determines the connectivety of the countour.
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edge detection with dilation: examples

(a) f (b) s (c) (f ⊕ s) − f
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edge detection with dilation: examples

(a) f (b) s (c) (f ⊕ s) − f
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duality between dilation and erosion

∙ Dilation and erosion are dual
operations w.r.t. complements
and reflections (180 degree
rotation). That is, erosion and
dilation can be expressed as

f ⊕ s = (f c ⊖ s)
c

f ⊖ s = (f c ⊕ s)
c

∙ This means that dilation and
erosion can be performed by
the same procedure, given that
we can rotate the structuring
element and find the
complement of the binary
image.

(a) f

(b) s

(c) f ⊕ s

(a) fc

(b) s

(c) fc ⊖ s 57



morphological opening

∙ Erosion of an image removes all regions that cannot fit the structuring element, and
shrinks all other regions.

∙ We can then dilate the result of the erosion, with this
∙ the regions that where shrinked are (approximately) restored.
∙ the regions too small to survive an erosion, are not restored.

∙ This is morphological opening

f ◦ s = (f ⊖ s)⊕ s

∙ The name stems from that this operation can provide an opening (a space) between
regions that are connected through thin ”bridges”, almost without affecting the
original shape of the larger regions.

∙ Using erosion only will also open these bridges, but the shape of the larger regions
is also altered.

∙ The size and shape of the structuring element is vital.
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example: opening

(a) f (b) s (c) f ◦ s

Figure 29: Morphological opening of f with s.

59



morphological closing

∙ Dilation of an image expands foreground regions and fills small (relative to the
structuring element) holes in the foreground.

∙ We can then erode the result of the dilation, then
∙ the regions that where expanded are (approximately) restored.
∙ the holes that where filled, are not opened again.

∙ This is morphological closing

f • s = (f ⊕ s)⊖ s

∙ The name stems from that this operation can close small gaps between foreground
regions, without altering the larger foreground shapes too much.

∙ Using dilation only will also close these gaps, but the shape of the larger regions is
also altered.

∙ The size and shape of the structuring element is vital.
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example: closing

(a) f (b) s (c) f • s

Figure 30: Morphological opening of f with s.
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duality

∙ Opening and closing are dual
operations w.r.t. complements
and rotation

f ◦ s = (f c • s)c

f • s = (f c ◦ s)c

∙ This means that closing can be
performed by complementing
the image, opening the
complement by the rotated
structuring element, and
complement the result. The
corresponding is true for
opening.

(a) f

(b) s

(c) f ◦ s

(a) fc

(b) s

(c) fc • s 62



hit-or-miss transformation

∙ Let f be a binary image as usual, but define s to be a tuple of two structuring
elements s = (shit, smiss).

∙ The hit-or-miss transformation is then defined as

f ⊛ s = (f ⊖ shit) ∩ (f c ⊖ smiss),

∙ A foreground pixel in the out-image is only achieved if
∙ shit fits the foreground around the pixel, and
∙ smiss fits the background around the pixel.

∙ This can be used in several applications, including
∙ finding certain patterns in an image,
∙ removing single pixels,
∙ thinning and thickening foreground regions.
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hit-or-miss example

(a) f (b) shit (c) f ⊖ shit

(a) fc (b) smiss (c) fc ⊖ smiss

Figure 35: f ⊛ s 64



morphological thinning

∙ Morphological thinning of an image f with a structuring element tuple s, is defined
as

f ⊗ s = f \ (f ⊛ s)

= f ∩ (f ⊛ s)c

∙ In order to thin a foreground region, we perform a sequential thinning with multiple
structuring elements s1, . . . , s8, which, when defined with the hit-or-miss notation
above are

shit1 =

0 0 0

0 1 0

1 1 1

, smiss
1 =

1 1 1

0 0 0

0 0 0

.

shit2 =

0 0 0

1 1 0

1 1 0

, smiss
2 =

0 1 1

0 0 1

0 0 0

.

Following this pattern, where si+1 is rotated clockwise w.r.t. si, we continue this until

shit8 =

0 0 0

0 1 1

0 1 1

, smiss
8 =

1 1 0

1 0 0

0 0 0

.
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morphological thinning

∙ With these previously defined structuring elements, we apply the iteration

d0 = f

dk = dk−1 ⊗ {s1, · · · , s8}
= (· · · ((dk−1 ⊗ s1)⊗ s2) · · · )⊗ s8

for K iterations until dK = dK−1 and we terminate with dK as the result of the
thinning.

∙ In the same manner, we define the dual operator thickening

f ⊙ s = f ∪ (f ⊛ s),

which also can be used in a sequential manner analogous to thinning.
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thinning example

(a) d0 = f (b) d01 = d0 \ (d0 ⊛ s1) (c) d02 = d01 \ (d01 ⊛ s2)

(d) d03 = d02 \ (d02 ⊛ s3) (e) d04 = d03 \ (d03 ⊛ s4) (f ) d05 = d04 \ (d04 ⊛ s5)

(g) d06 = d05 \ (d05 ⊛ s6) (h) d07 = d06 \ (d06 ⊛ s7) (i) d08 = d07 \ (d07 ⊛ s8)
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thinning example

(a) d1 = d0 (b) d11 = d1 \ (d1 ⊛ s1) (c) d12 = d11 \ (d11 ⊛ s2)

(d) d13 = d12 \ (d12 ⊛ s3) (e) d14 = d13 \ (d13 ⊛ s4) (f ) d15 = d14 \ (d14 ⊛ s5)

(g) d16 = d15 \ (d15 ⊛ s6) (h) d17 = d16 \ (d16 ⊛ s7) (i) d18 = d17 \ (d17 ⊛ s8)
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thinning example

(a) d2 = d1 (b) d21 = d2 \ (d2 ⊛ s1) (c) d22 = d21 \ (d21 ⊛ s2)

(d) d23 = d22 \ (d22 ⊛ s3) (e) d24 = d23 \ (d23 ⊛ s4) (f ) d25 = d24 \ (d24 ⊛ s5)

(g) d26 = d25 \ (d25 ⊛ s6) (h) d27 = d26 \ (d26 ⊛ s7) (i) d28 = d27 \ (d27 ⊛ s8)
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summary

∙ Coding and compression
∙ Information theory
∙ Shannon-Fano coding
∙ Huffman coding
∙ Arithmetic coding
∙ Difference transform
∙ Run-length coding
∙ Lempel-Ziv-Welch coding
∙ Lossy JPEG compression

∙ Binary morphology
∙ Fundamentals: Structuring element, erosion and dilation
∙ Opening and closing
∙ Hit-or-miss transform
∙ Morphological thinning
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Questions?
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