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Chapter 17

Principal Components Analysis

Principal components analysis (PCA) is one of a family of techniques for taking
high-dimensional data, and using the dependencies between the variables to represent
it in a more tractable, lower-dimensional form, without losing too much information.
PCA is one of the simplest and most robust ways of doing such dimensionality
reduction. It is also one of the oldest, and has been rediscovered many times in
many fields, so it is also known as the Karhunen-Loève transformation, the Hotelling
transformation, the method of empirical orthogonal functions, and singular value
decomposition1. We will call it PCA.

17.1 Mathematics of Principal Components
We start with p-dimensional vectors, and want to summarize them by projecting
down into a q -dimensional subspace. Our summary will be the projection of the
original vectors on to q directions, the principal components, which span the sub-
space.

There are several equivalent ways of deriving the principal components mathe-
matically. The simplest one is by finding the projections which maximize the vari-
ance. The first principal component is the direction in space along which projections
have the largest variance. The second principal component is the direction which
maximizes variance among all directions orthogonal to the first. The k th component
is the variance-maximizing direction orthogonal to the previous k � 1 components.
There are p principal components in all.

Rather than maximizing variance, it might sound more plausible to look for the
projection with the smallest average (mean-squared) distance between the original
vectors and their projections on to the principal components; this turns out to be
equivalent to maximizing the variance.

Throughout, assume that the data have been “centered”, so that every variable
has mean 0. If we write the centered data in a matrix x, where rows are objects and

1Strictly speaking, singular value decomposition is a matrix algebra trick which is used in the most
common algorithm for PCA.
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329 17.1. MATHEMATICS OF PRINCIPAL COMPONENTS

columns are variables, then xT x = nv, where v is the covariance matrix of the data.
(You should check that last statement!)

17.1.1 Minimizing Projection Residuals
We’ll start by looking for a one-dimensional projection. That is, we have p-dimensional
vectors, and we want to project them on to a line through the origin. We can specify
the line by a unit vector along it, ~w, and then the projection of a data vector ~xi on to
the line is ~xi · ~w, which is a scalar. (Sanity check: this gives us the right answer when
we project on to one of the coordinate axes.) This is the distance of the projection
from the origin; the actual coordinate in p-dimensional space is (~xi · ~w) ~w. The mean
of the projections will be zero, because the mean of the vectors ~xi is zero:
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~w (17.1)

If we try to use our projected or image vectors instead of our original vectors,
there will be some error, because (in general) the images do not coincide with the
original vectors. (When do they coincide?) The difference is the error or residual of
the projection. How big is it? For any one vector, say ~xi , it’s
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since ~w · ~w = k ~wk2 = 1. Add those residuals up across all the vectors:
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The first summation doesn’t depend on ~w, so it doesn’t matter for trying to minimize
the mean squared residual. To make the MSE small, what we must do is make the
second sum big, i.e., we want to maximize
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2 (17.8)

which we can see is the sample mean of ( ~w · ~xi )
2. The mean of a square is always equal

to the square of the mean plus the variance:
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17.1. MATHEMATICS OF PRINCIPAL COMPONENTS 330

Since we’ve just seen that the mean of the projections is zero, minimizing the residual
sum of squares turns out to be equivalent to maximizing the variance of the projec-
tions.

(Of course in general we don’t want to project on to just one vector, but on to
multiple principal components. If those components are orthogonal and have the
unit vectors ~w1, ~w2, . . . ~wk , then the image of xi is its projection into the space spanned
by these vectors,

kX
j=1
(~xi · ~wj ) ~wj (17.10)

The mean of the projection on to each component is still zero. If we go through the
same algebra for the mean squared error, it turns [Exercise 2] out that the cross-terms
between different components all cancel out, and we are left with trying to maximize
the sum of the variances of the projections on to the components.)

17.1.2 Maximizing Variance

Accordingly, let’s maximize the variance! Writing out all the summations grows te-
dious, so let’s do our algebra in matrix form. If we stack our n data vectors into an
n⇥ p matrix, x, then the projections are given by xw, which is an n⇥ 1 matrix. The
variance is

�2
~w =
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�
~xi · ~w

�2 (17.11)

=
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(xw)T (xw) (17.12)

=
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n
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= wT xT x
n

w (17.14)

= wT vw (17.15)

We want to chose a unit vector ~w so as to maximize �2
~w . To do this, we need to

make sure that we only look at unit vectors — we need to constrain the maximization.
The constraint is that ~w · ~w = 1, or wT w = 1. To enforce this constraint, we introduce
a Lagrange multiplier � (Appendix E) and do a larger unconstrained optimization:

L (w,�) ⌘ �2
w��(wT w� 1) (17.16)

@ L
@ �

= wT w� 1 (17.17)

@ L
@ w

= 2vw� 2�w (17.18)
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331 17.1. MATHEMATICS OF PRINCIPAL COMPONENTS

Setting the derivatives to zero at the optimum, we get

wT w = 1 (17.19)
vw = �w (17.20)

Thus, desired vector w is an eigenvector of the covariance matrix v, and the maxi-
mizing vector will be the one associated with the largest eigenvalue �. This is good
news, because finding eigenvectors is something which can be done comparatively
rapidly, and because eigenvectors have many nice mathematical properties, which we
can use as follows.

We know that v is a p ⇥ p matrix, so it will have p different eigenvectors.2 We
know that v is a covariance matrix, so it is symmetric, and then linear algebra tells
us that the eigenvectors must be orthogonal to one another. Again because v is a
covariance matrix, it is a positive matrix, in the sense that ~x · v~x � 0 for any ~x. This
tells us that the eigenvalues of v must all be � 0.

The eigenvectors of v are the principal components of the data. We know that
they are all orthogonal top each other from the previous paragraph, so together they
span the whole p-dimensional space. The first principal component, i.e. the eigen-
vector which goes the largest value of �, is the direction along which the data have
the most variance. The second principal component, i.e. the second eigenvector, is
the direction orthogonal to the first component with the most variance. Because it
is orthogonal to the first eigenvector, their projections will be uncorrelated. In fact,
projections on to all the principal components are uncorrelated with each other. If
we use q principal components, our weight matrix w will be a p ⇥ q matrix, where
each column will be a different eigenvector of the covariance matrix v. The eigen-
values will give the total variance described by each component. The variance of the
projections on to the first q principal components is then

Pq
i=1 �i .

17.1.3 More Geometry; Back to the Residuals
Suppose that the data really are q -dimensional. Then v will have only q positive
eigenvalues, and p�q zero eigenvalues. If the data fall near a q -dimensional subspace,
then p � q of the eigenvalues will be nearly zero.

If we pick the top q components, we can define a projection operator Pq . The
images of the data are then xPq . The projection residuals are x� xPq or x(I�Pq ).
(Notice that the residuals here are vectors, not just magnitudes.) If the data really
are q -dimensional, then the residuals will be zero. If the data are approximately q -
dimensional, then the residuals will be small. In any case, we can define the R2 of the
projection as the fraction of the original variance kept by the image vectors,

R2 ⌘
Pq

i=1 �iPp
j=1 � j

(17.21)

just as the R2 of a linear regression is the fraction of the original variance of the
dependent variable kept by the fitted values.

2Exception: if n < p, there are only n distinct eigenvectors and eigenvalues.
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17.1. MATHEMATICS OF PRINCIPAL COMPONENTS 332

The q = 1 case is especially instructive. We know that the residual vectors are all
orthogonal to the projections. Suppose we ask for the first principal component of
the residuals. This will be the direction of largest variance which is perpendicular to
the first principal component. In other words, it will be the second principal com-
ponent of the data. This suggests a recursive algorithm for finding all the principal
components: the k th principal component is the leading component of the residu-
als after subtracting off the first k � 1 components. In practice, it is faster to use
eigenvector-solvers to get all the components at once from v, but this idea is correct
in principle.

This is a good place to remark that if the data really fall in a q -dimensional sub-
space, then v will have only q positive eigenvalues, because after subtracting off those
components there will be no residuals. The other p � q eigenvectors will all have
eigenvalue 0. If the data cluster around a q -dimensional subspace, then p � q of the
eigenvalues will be very small, though how small they need to be before we can ne-
glect them is a tricky question.3

Projections on to the first two or three principal components can be visualized;
however they may not be enough to really give a good summary of the data. Usually,
to get an R2 of 1, you need to use all p principal components.4 How many principal
components you should use depends on your data, and how big an R2 you need. In
some fields, you can get better than 80% of the variance described with just two or
three components. A sometimes-useful device is to plot 1�R2 versus the number of
components, and keep extending the curve it until it flattens out.

17.1.4 Statistical Inference, or Not
You may have noticed, and even been troubled by, the fact that I have said nothing
at all yet like “assume the data are drawn at random from some distribution”, or
“assume the different rows of the data frame are statistically independent”. This is
because no such assumption is required for principal components. All it does is say
“these data can be summarized using projections along these directions”. It says noth-
ing about the larger population or stochastic process the data came from; it doesn’t
even suppose the latter exist.

However, we could add a statistical assumption and see how PCA behaves under
those conditions. The simplest one is to suppose that the data are IID draws from
a distribution with covariance matrix V0. Then the sample covariance matrix V ⌘
1
n XT X will converge on V0 as n !1. Since the principal components are smooth
functions of V (namely its eigenvectors), they will tend to converge as n grows5. So,

3Be careful when n < p. Any two points define a line, and three points define a plane, etc., so if there
are fewer data points than variables, it is necessarily true that the fall on a low-dimensional subspace. In
§17.3.1, we represent stories in the New York Times as vectors with p ⇡ 440, but n = 102. Finding that
only 102 principal components keep all the variance is not an empirical discovery but a mathematical
artifact.

4The exceptions are when some of your variables are linear combinations of the others, so that you
don’t really have p different variables, or when n < p.

5There is a wrinkle if V0 has “degenerate” eigenvalues, i.e., two or more eigenvectors with the same
eigenvalue. Then any linear combination of those vectors is also an eigenvector, with the same eigenvalue
(Exercise 3.) For instance, if V0 is the identity matrix, then every vector is an eigenvector, and PCA
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333 17.2. EXAMPLE: CARS

Variable Meaning
Sports Binary indicator for being a sports car
SUV Indicator for sports utility vehicle
Wagon Indicator
Minivan Indicator
Pickup Indicator
AWD Indicator for all-wheel drive
RWD Indicator for rear-wheel drive
Retail Suggested retail price (US$)
Dealer Price to dealer (US$)
Engine Engine size (liters)
Cylinders Number of engine cylinders
Horsepower Engine horsepower
CityMPG City gas mileage
HighwayMPG Highway gas mileage
Weight Weight (pounds)
Wheelbase Wheelbase (inches)
Length Length (inches)
Width Width (inches)

Table 17.1: Features for the 2004 cars data.

along with that additional assumption about the data-generating process, PCA does
make a prediction: in the future, the principal components will look like they do
now.

17.2 Example: Cars
Let’s work an example. The data6 consists of 388 cars from the 2004 model year, with
18 features. Eight features are binary indicators; the other 11 features are numerical
(Table 17.1). All of the features except Type are numerical. Table 17.2 shows the first
few lines from the data set. PCA only works with numerical variables, so we have
ten of them to play with.

There are two R functions for doing PCA, princomp and prcomp, which differ in
how they do the actual calculation.7 The latter is generally more robust, so we’ll just
use it.

cars04 = read.csv("cars-fixed04.dat")
cars04.pca = prcomp(cars04[,8:18], scale.=TRUE)

routines will return an essentially arbitrary collection of mutually perpendicular vectors. Generically,
however, any arbitrarily small tweak to V0 will break the degeneracy.

6On the course website; from http://www.amstat.org/publications/jse/datasets/04cars.
txt, with incomplete records removed.

7princomp actually calculates the covariance matrix and takes its eigenvalues. prcomp uses a different
technique called “singular value decomposition”.
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17.2. EXAMPLE: CARS 334

Sports, SUV, Wagon, Minivan, Pickup, AWD, RWD, Retail,Dealer,Engine,
Cylinders,Horsepower,CityMPG,HighwayMPG,Weight,Wheelbase,Length,Width

Acura 3.5 RL,0,0,0,0,0,0,0,43755,39014,3.5,6,225,18,24,3880,115,197,72
Acura MDX,0,1,0,0,0,1,0,36945,33337,3.5,6,265,17,23,4451,106,189,77
Acura NSX S,1,0,0,0,0,0,1,89765,79978,3.2,6,290,17,24,3153,100,174,71

Table 17.2: The first few lines of the 2004 cars data set.

The second argument to prcomp tells it to first scale all the variables to have variance
1, i.e., to standardize them. You should experiment with what happens with this data
when we don’t standardize.

We can now extract the loadings or weight matrix from the cars04.pca object.
For comprehensibility I’ll just show the first two components.

> round(cars04.pca$rotation[,1:2],2)
PC1 PC2

Retail -0.26 -0.47
Dealer -0.26 -0.47
Engine -0.35 0.02
Cylinders -0.33 -0.08
Horsepower -0.32 -0.29
CityMPG 0.31 0.00
HighwayMPG 0.31 0.01
Weight -0.34 0.17
Wheelbase -0.27 0.42
Length -0.26 0.41
Width -0.30 0.31

This says that all the variables except the gas-mileages have a negative projection on to
the first component. This means that there is a negative correlation between mileage
and everything else. The first principal component tells us about whether we are
getting a big, expensive gas-guzzling car with a powerful engine, or whether we are
getting a small, cheap, fuel-efficient car with a wimpy engine.

The second component is a little more interesting. Engine size and gas mileage
hardly project on to it at all. Instead we have a contrast between the physical size
of the car (positive projection) and the price and horsepower. Basically, this axis
separates mini-vans, trucks and SUVs (big, not so expensive, not so much horse-
power) from sports-cars (small, expensive, lots of horse-power).

To check this interpretation, we can use a useful tool called a biplot, which plots
the data, along with the projections of the original variables, on to the first two com-
ponents (Figure 17.1). Notice that the car with the lowest value of the second com-
ponent is a Porsche 911, with pick-up trucks and mini-vans at the other end of the
scale. Similarly, the highest values of the first component all belong to hybrids.
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335 17.2. EXAMPLE: CARS

biplot(cars04.pca,cex=0.4)

Figure 17.1: “Biplot” of the 2004 cars data. The horizontal axis shows projections on
to the first principal component, the vertical axis the second component. Car names
are written at their projections on to the components (using the coordinate scales on
the top and the right). Red arrows show the projections of the original variables on
to the principal components (using the coordinate scales on the bottom and on the
left).
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17.3. LATENT SEMANTIC ANALYSIS 336

17.3 Latent Semantic Analysis
Information retrieval systems (like search engines) and people doing computational
text analysis often represent documents as what are called bags of words: documents
are represented as vectors, where each component counts how many times each word
in the dictionary appears in the text. This throws away information about word or-
der, but gives us something we can work with mathematically. Part of the represen-
tation of one document might look like:

a abandoned abc ability able about above abroad absorbed absorbing abstract
43 0 0 0 0 10 0 0 0 0 1

and so on through to “zebra”, “zoology”, “zygote”, etc. to the end of the dictionary.
These vectors are very, very large! At least in English and similar languages, these
bag-of-word vectors have three outstanding properties:

1. Most words do not appear in most documents; the bag-of-words vectors are
very sparse (most entries are zero).

2. A small number of words appear many times in almost all documents; these
words tell us almost nothing about what the document is about. (Examples:
“the”, “is”, “of”, “for”, “at”, “a”, “and”, “here”, “was”, etc.)

3. Apart from those hyper-common words, most words’ counts are correlated
with some but not all other words; words tend to come in bunches which
appear together.

Taken together, this suggests that we do not really get a lot of value from keeping
around all the words. We would be better off if we could project down a smaller
number of new variables, which we can think of as combinations of words that tend
to appear together in the documents, or not at all. But this tendency needn’t be abso-
lute — it can be partial because the words mean slightly different things, or because
of stylistic differences, etc. This is exactly what principal components analysis does.

To see how this can be useful, imagine we have a collection of documents (a cor-
pus), which we want to search for documents about agriculture. It’s entirely possible
that many documents on this topic don’t actually contain the word “agriculture”, just
closely related words like “farming”. A simple search on “agriculture” will miss them.
But it’s very likely that the occurrence of these related words is well-correlated with
the occurrence of “agriculture”. This means that all these words will have similar pro-
jections on to the principal components, and will be easy to find documents whose
principal components projection is like that for a query about agriculture. This is
called latent semantic indexing.

To see why this is indexing, think about what goes into coming up with an index
for a book by hand. Someone draws up a list of topics and then goes through the
book noting all the passages which refer to the topic, and maybe a little bit of what
they say there. For example, here’s the start of the entry for “Agriculture” in the
index to Adam Smith’s The Wealth of Nations:
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337 17.3. LATENT SEMANTIC ANALYSIS

AGRICULTURE, the labour of, does not admit of such subdivisions
as manufactures, 6; this impossibility of separation, prevents agricul-
ture from improving equally with manufactures, 6; natural state of, in
a new colony, 92; requires more knowledge and experience than most
mechanical professions, and yet is carried on without any restrictions,
127; the terms of rent, how adjusted between landlord and tenant, 144;
is extended by good roads and navigable canals, 147; under what circum-
stances pasture land is more valuable than arable, 149; gardening not a
very gainful employment, 152–3; vines the most profitable article of cul-
ture, 154; estimates of profit from projects, very fallacious, ib.; cattle and
tillage mutually improve each other, 220; . . .

and so on. (Agriculture is an important topic in The Wealth of Nations.) It’s asking
a lot to hope for a computer to be able to do something like this, but we could at
least hope for a list of pages like “6,92,126,144,147,152 � �3,154,220, . . .”. One
could imagine doing this by treating each page as its own document, forming its
bag-of-words vector, and then returning the list of pages with a non-zero entry for
“agriculture”. This will fail: only two of those nine pages actually contains that
word, and this is pretty typical. On the other hand, they are full of words strongly
correlated with “agriculture”, so asking for the pages which are most similar in their
principal components projection to that word will work great.8

At first glance, and maybe even second, this seems like a wonderful trick for
extracting meaning, or semantics, from pure correlations. Of course there are also all
sorts of ways it can fail, not least from spurious correlations. If our training corpus
happens to contain lots of documents which mention “farming” and “Kansas”, as
well as “farming” and “agriculture”, latent semantic indexing will not make a big
distinction between the relationship between “agriculture” and “farming” (which is
genuinely semantic) and that between “Kansas” and “farming” (which is accidental,
and probably wouldn’t show up in, say, a corpus collected from Europe).

Despite this susceptibility to spurious correlations, latent semantic indexing is an
extremely useful technique in practice, and the foundational papers (Deerwester et al.,
1990; Landauer and Dumais, 1997) are worth reading.

17.3.1 Principal Components of the New York Times

To get a more concrete sense of how latent semantic analysis works, and how it re-
veals semantic information, let’s apply it to some data. The accompanying R file and
R workspace contains some news stories taken from the New York Times Annotated
Corpus (Sandhaus, 2008), which consists of about 1.8 million stories from the Times,
from 1987 to 2007, which have been hand-annotated by actual human beings with
standardized machine-readable information about their contents. From this corpus,
I have randomly selected 57 stories about art and 45 stories about music, and turned
them into a bag-of-words data frame, one row per story, one column per word; plus
an indicator in the first column of whether the story is one about art or one about

8Or it should anyway; I haven’t actually done the experiment with this book.
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17.3. LATENT SEMANTIC ANALYSIS 338

music.9 The original data frame thus has 102 rows, and 4432 columns: the categorical
label, and 4431 columns with counts for every distinct word that appears in at least
one of the stories.10

The PCA is done as it would be for any other data:

nyt.pca <- prcomp(nyt.frame[,-1])
nyt.latent.sem <- nyt.pca$rotation

We need to omit the first column in the first command because it contains categorical
variables, and PCA doesn’t apply to them. The second command just picks out the
matrix of projections of the variables on to the components — this is called rotation
because it can be thought of as rotating the coordinate axes in feature-vector space.

Now that we’ve done this, let’s look at what the leading components are.

> signif(sort(nyt.latent.sem[,1],decreasing=TRUE)[1:30],2)
music trio theater orchestra composers opera
0.110 0.084 0.083 0.067 0.059 0.058

theaters m festival east program y
0.055 0.054 0.051 0.049 0.048 0.048

jersey players committee sunday june concert
0.047 0.047 0.046 0.045 0.045 0.045

symphony organ matinee misstated instruments p
0.044 0.044 0.043 0.042 0.041 0.041

X.d april samuel jazz pianist society
0.041 0.040 0.040 0.039 0.038 0.038

> signif(sort(nyt.latent.sem[,1],decreasing=FALSE)[1:30],2)
she her ms i said mother cooper

-0.260 -0.240 -0.200 -0.150 -0.130 -0.110 -0.100
my painting process paintings im he mrs

-0.094 -0.088 -0.071 -0.070 -0.068 -0.065 -0.065
me gagosian was picasso image sculpture baby

-0.063 -0.062 -0.058 -0.057 -0.056 -0.056 -0.055
artists work photos you nature studio out
-0.055 -0.054 -0.051 -0.051 -0.050 -0.050 -0.050

says like
-0.050 -0.049

These are the thirty words with the largest positive and negative projections on to the
first component.11 The words with positive projections are mostly associated with
music, those with negative components with the visual arts. The letters “m” and “p”

9Actually, following standard practice in language processing, I’ve normalized the bag-of-word vectors
so that documents of different lengths are comparable, and used “inverse document-frequency weighting”
to de-emphasize hyper-common words like “the” and emphasize more informative words. See the lecture
notes for data mining if you’re interested.

10If we were trying to work with the complete corpus, we should expect at least 50000 words, and
perhaps more.

11Which direction is positive and which negative is of course arbitrary; basically it depends on internal
choices in the algorithm.
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show up with msuic because of the combination “p.m”, which our parsing breaks
into two single-letter words, and because stories about music give show-times more
often than do stories about art. Personal pronouns appear with art stories because
more of those quote people, such as artists or collectors.12

What about the second component?

> signif(sort(nyt.latent.sem[,2],decreasing=TRUE)[1:30],2)
art museum images artists donations museums

0.150 0.120 0.095 0.092 0.075 0.073
painting tax paintings sculpture gallery sculptures

0.073 0.070 0.065 0.060 0.055 0.051
painted white patterns artist nature service

0.050 0.050 0.047 0.047 0.046 0.046
decorative feet digital statue color computer

0.043 0.043 0.043 0.042 0.042 0.041
paris war collections diamond stone dealers
0.041 0.041 0.041 0.041 0.041 0.040

> signif(sort(nyt.latent.sem[,2],decreasing=FALSE)[1:30],2)
her she theater opera ms

-0.220 -0.220 -0.160 -0.130 -0.130
i hour production sang festival

-0.083 -0.081 -0.075 -0.075 -0.074
music musical songs vocal orchestra

-0.070 -0.070 -0.068 -0.067 -0.067
la singing matinee performance band

-0.065 -0.065 -0.061 -0.061 -0.060
awards composers says my im
-0.058 -0.058 -0.058 -0.056 -0.056

play broadway singer cooper performances
-0.056 -0.055 -0.052 -0.051 -0.051

Here the positive words are about art, but more focused on acquiring and trading
(“collections”, “dealers”, “donations”, “dealers”) than on talking with artists or about
them. The negative words are musical, specifically about musical theater and vocal
performances.

I could go on, but by this point you get the idea.

17.4 PCA for Visualization
Let’s try displaying the Times stories using the principal components. (Assume that
the objects from just before are still in memory.)

plot(nyt.pca$x[,1:2],type="n")
points(nyt.pca$x[nyt.frame[,"class.labels"]=="music",1:2],pch="m",col="blue")
points(nyt.pca$x[nyt.frame[,"class.labels"]=="art",1:2],pch="a",col="red")

12You should check out these explanations for yourself. The raw stories are part of the R workspace.
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17.4. PCA FOR VISUALIZATION 340

Figure 17.2: Projection of the Times stories on to the first two principal components.
Labels: “a” for art stories, “m” for music.

The first command makes an empty plot — I do this just to set up the axes nicely
for the data which will actually be displayed. The second and third commands plot a
blue “m” at the location of each music story, and a red “a” at the location of each art
story. The result is Figure 17.2.

Notice that even though we have gone from 4431 dimensions to 2, and so thrown
away a lot of information, we could draw a line across this plot and have most of
the art stories on one side of it and all the music stories on the other. If we let
ourselves use the first four or five principal components, we’d still have a thousand-
fold savings in dimensions, but we’d be able to get almost-perfect separation between
the two classes. This is a sign that PCA is really doing a good job at summarizing the
information in the word-count vectors, and in turn that the bags of words give us a
lot of information about the meaning of the stories.
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The figure also illustrates the idea of multidimensional scaling, which means
finding low-dimensional points to represent high-dimensional data by preserving the
distances between the points. If we write the original vectors as ~x1,~x2, . . .~xn , and their
images as ~y1,~y2, . . .~yn , then the MDS problem is to pick the images to minimize the
difference in distances:

X
i

X
j 6=i

Ä
k~yi �~yjk�k~xi �~xjk

ä2
(17.22)

This will be small if distances between the image points are all close to the distances
between the original points. PCA accomplishes this precisely because ~yi is itself close
to ~xi (on average).

17.5 PCA Cautions
Trying to guess at what the components might mean is a good idea, but like many god
ideas it’s easy to go overboard. Specifically, once you attach an idea in your mind to
a component, and especially once you attach a name to it, it’s very easy to forget that
those are names and ideas you made up; to reify them, as you might reify clusters.
Sometimes the components actually do measure real variables, but sometimes they
just reflect patterns of covariance which have many different causes. If I did a PCA
of the same variables but for, say, European cars, I might well get a similar first com-
ponent, but the second component would probably be rather different, since SUVs
are much less common there than here.

A more important example comes from population genetics. Starting in the late
1960s, L. L. Cavalli-Sforza and collaborators began a huge project of mapping hu-
man genetic variation — of determining the frequencies of different genes in different
populations throughout the world. (Cavalli-Sforza et al. (1994) is the main summary;
Cavalli-Sforza has also written several excellent popularizations.) For each point in
space, there are a very large number of variables, which are the frequencies of the var-
ious genes among the people living there. Plotted over space, this gives a map of that
gene’s frequency. What they noticed (unsurprisingly) is that many genes had simi-
lar, but not identical, maps. This led them to use PCA, reducing the huge number
of variables (genes) to a few components. Results look like Figure 17.3. They inter-
preted these components, very reasonably, as signs of large population movements.
The first principal component for Europe and the Near East, for example, was sup-
posed to show the expansion of agriculture out of the Fertile Crescent. The third,
centered in steppes just north of the Caucasus, was supposed to reflect the expansion
of Indo-European speakers towards the end of the Bronze Age. Similar stories were
told of other components elsewhere.

Unfortunately, as Novembre and Stephens (2008) showed, spatial patterns like
this are what one should expect to get when doing PCA of any kind of spatial data
with local correlations, because that essentially amounts to taking a Fourier trans-
form, and picking out the low-frequency components.13 They simulated genetic dif-
fusion processes, without any migration or population expansion, and got results that

13Remember that PCA re-writes the original vectors as a weighted sum of new, orthogonal vectors, just
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looked very like the real maps (Figure 17.4). This doesn’t mean that the stories of the
maps must be wrong, but it does undercut the principal components as evidence for
those stories.

17.6 Exercises
1. Step through the pca.R file on the class website. Then replicate the analysis of

the cars data given above.

2. Suppose that we use q directions, given by q orthogonal length-one vectors
~w1, . . . ~wq . We want to show that minimizing the mean squared error is equiva-
lent to maximizing the sum of the variances of the scores along these directions.

(a) Write w for the matrix forms by stacking the ~wi . Prove that wT w= Iq .

(b) Find the matrix of q -dimensional scores in terms of x and w. Hint: your
answer should reduce to ~xi · ~w1 when q = 1.

(c) Find the matrix of p-dimensional approximations based on these scores
in terms of x and w. Hint: your answer should reduce to (~xi · ~w1) ~w1 when
q = 1.

(d) Show that the MSE of using the vectors ~w1, . . . ~wq is the sum of two terms,
one of which depends only on x and not w, and the other depends only
on the scores along those directions (and not otherwise on what those
directions are). Hint: look at the derivation of Eq. 17.5, and use Exercise
2a.

(e) Explain in what sense minimizing projection residuals is equivalent to
maximizing the sum of variances along the different directions.

3. Suppose that u has two eigenvectors, ~w1 and ~w2, with the same eigenvalue a.
Prove that any linear combination of ~w1 and ~w2 is also an eigenvector of u, and
also has eigenvalue a.

as Fourier transforms do. When there is a lot of spatial correlation, values at nearby points are similar, so
the low-frequency modes will have a lot of amplitude, i.e., carry a lot of the variance. So first principal
components will tend to be similar to the low-frequency Fourier modes.
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Figure 17.3: Principal components of genetic variation in the old world, according to
Cavalli-Sforza et al. (1994), as re-drawn by Novembre and Stephens (2008).
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Figure 17.4: How the PCA patterns can arise as numerical artifacts (far left column)
or through simple genetic diffusion (next column). From Novembre and Stephens
(2008).
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